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Abstract. The problem of simplifying solution of linear dynamic systems with preset
conditions at the edges and internal points of the segment is considered. In this regard a
modification technique of the existing cascade decomposition method based on obtaining a
general formula for the system state and control functions is described. Coefficients of this
formula are identified in a recursive way. The formula is presented to obtain the cascade
decomposition method and kernel functions of the intermediate step matrices being important
for the last step function. Illustratively, a practice-oriented example proves the method
advantages in convenience and speed comparing with the conventional method of cascade
decomposition.

1. Introduction
The fully controlled dynamic system

ẋ(t) = A x(t) +B u(t), (1)

(see [1–7]) is considered. Here, vector function x(t) is called a system state and u(t) is system
control. The present paper examines a solution for system (1) when the state and control
function of the system meets the following boundary and intermediate conditions:

x(ti) = x0 0
i . (2)

dqu(t)

dtq
|ti = uq 0

i , q = 0, p2, i = 0, l, (3)

when ti : i = 0, l, T0 = t0 < t1 < ... < tl = T1.
A system with conditions (2) is used, for example, in solving the task of movement of a

material point moving in reactive force over a challenging terrain from position x(T0) = x0
to point x(T1) = x1 and getting through checkpoints x(ti) = xi : i = 0, l . The task having
(3)-type conditions is set up and solved in case of seamless matching of various technological
modes. Analytical solutions given in [1] are known, which have some complexity due to matrix
exponentials.

[8–10] provide a technique for solving the stated tasks, i.e. the method of system cascade
decomposition basing on sequential transfers from (1)–(3) to systems having matrices of smaller
size and higher number of imposed conditions of (2), (3) type. Transfer performed untill
controllability matrix Bp becomes surjective on the p-th step. A vector-function of state
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xp(t) is then being sought in a selected class of basis functions by the method of indefined
coefficients. After that a state and control function of the task stated is determined by recurrent
formulae. Here one can apply different classes as classes of linearly independent functions, such
as polynomial, exponential, linear fractional and others. One of the drawbacks of the described
above method is that when changing the applied functions class, as well as the imposed system
conditions of types (2), (3), all steps of the cascade decomposition method should be performed
again, thus providing computational time delays if the task is solved with systems of high
dimension, or tasks where multiple solution is required using the cascade decomposition method
of the same system (1) with different conditions (2), (3) [11, 12]. The present paper proposes a
method for developing a universal formula for state and control functions, thus accelerating and
facilitating solution of such tasks as constructing a constant-bounded continuous control and
finding a feedback matrix.

2. Forward Path of Cascade Decomposition Method
The study is based on the concepts of a kernel, a co-kernel, kernel projector P (B), co-kernel
projector Q(B), half-inverse operator B− of [9]. Below is a brief description of cascade
decomposition method [9] for further study. Conditions imposed on higher derivatives of function
x(t) are pre-calculated

xj+1 0
i =

dj+1x(t)

(dt)j+1
|ti = A

djx(t)

(dt)j
|ti +B · d

ju(t)

(dt)j
|ti = Axj 0

i +Buj 0
i . j = 0, p2, i = 0, l. (4)

If matrix B of (1) is non- surjective, variables are replaced

x1(t) = Q(B) · x(t), y1(t) = (E −Q(B)) · x(t), (5)

A1 = Q(B) ·A ·Q(B), B1 = Q(B) ·A · (E −Q(B)).

From this point on E denotes a single matrix with the size equals the size of matrix A of (1).
Conditions for new state and control functions x1(t) and y1(t) are re-calculated by

xj 1
i = Q(B) · xj 0

i , yj 1
i = (E −Q(B)) · xj 0

i , (6)

xp2+2 1
i = A1x

p2+1 1
i +B1y

p2+1 1
i j = 0, p2 + 1, i = 0, l.

A new system of equations of lesser dimensions is obtained as, in the classical solution of the
problem by the cascade decomposition method, only linear independent components are kept in
x1(t) number of which is equal to matrix Q(B) rank.

dx1(t)

dt
= A1 · x1(t) +B1 · y1(t).

The procedure of variables replacement goes on and the following equation is obtained on
the p-th step

dxp(t)

dt
= Ap · xp(t) +Bp · yp(t)

Having surjective matrix Bp and conditions
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djxp(t)

(dt)j
|ti = xj p

i ,
dp2+p+1xp(t)

(dt)p2+p+1
|ti = xp2+p+1 p

i ,
djyp(t)

(dt)j
|ti = yj p

i j = 0, p2 + p, i = 0, l, (7)

Then, xp(t) is found by uncertainty coefficient method and yp(t) is determined by yp(t) =
B−

p (ẋ
p(t)−Apx

p(t)) + zp(t). Functions of the previous steps are distorted by

xm−1(t) = xm(t)+ ym(t), ym−1(t) = B−
m−1(ẋ

m−1(t)−Am−1x
m−1(t))+ zm−1(t), m = 1, p. (8)

Here zm(t) : m = 0, p functions of matrix Bm kernels meeting conditions Bmzm(t) = 0 and

zj m
i = (I − B−

mBm)yj m
i with j = 0, p2 +m, i = 0, l. Therefore, functions x(t) and u(t) are

determined by formula (8). Now, to accomplish the task, we change the order of the actions
performed comparing with the conventional cascade decomposition method algorithm. That is,
first we get a general formula to express functions x(t) and u(t) by xp(t) and kernel elements
zm(t) : m = 0, p. Then, we obtain a formula to express conditions imposed on xp(t) and
zm(t) : m = 0, p through (2), (3). To obtain a general formula, matrix dimensions are not
changed in the course of forward path of the cascade decomposition method. Let q = 0, p be
any number. Hence,

xp−q(t) = W q
q (x

p(t))(q) +W q
q−1(x

p(t))(q−1) + ...+W q
0 (x

p(t)) +

+Qq
p q−1(z

p(t))(q−1) + ...+Qq
p 0(z

p(t)) +Qq
p−1 q−2(z

p−1(t))
(q−2)

+ ...+Qq
p−q+1 0z

p−q+1(t), (9)

yp−q(t) = V q
q+1(x

p(t))(q+1) + V q
q (x

p(t))(q) + V q
q−1(x

p(t))(q−1) + ...+ V q
0 (x

p(t)) +

+Rq
p q(z

p(t))(q) + ...+Rq
p 0(z

p(t)) +Rq
p−1 q−1(z

p−1(t))
(q−1)

+ ...+Rq
p−q 0z

p−q(t).

Here W q
i : i = 0, q, V q

i : i = 0, q + 1, Qq
i j : i = p− q + 1, p, j = 0, q − 1, Rq

i j : i =

p− q, p, j = 0, q are any constant matrices independent on the selection of edge conditions
and basic function and dependent on φ(t) and dependent on system matrices A and B. The
matrices are calculated by the recurrent formula. Hence, we get the following formula from this
equation and (8)

W 0
0 = E, V 0

1 = B−
p , V

0
0 = −B−

p A
−
p , R

0
p 0 = E, Q1

p 0 = E, W q+1
q+1 = V q

q+1,

V q+1
q+2 = B−

p−(q+1)V
q
q+1, V

q+1
q+1 = B−

p−(q+1)(W
q
q + V q

q )−B−
p−(q+1)Ap−(q+1)V

q
q+1,

V q+1
0 = −B−

p−(q+1)Ap−(q+1)(W
q
0 + V q

0 ), W q+1
i = V q

i +W q
i , i = 0, q

V q+1
i = B−

p−(q+1)(W
q
i−1 + V q

i−1)−B−
p−(q+1)Ap−(q+1)(W

q
i + V q

i ), i = 1, q,

Rq+1
i 0 = −B−

p−(q+1)A
−
p−(q+1), R

q+1
p−(q+1) 0 = I. : i = p− q − 1, p, j = 0, q + 1.

Qq+1
i i−p+q+1 = Rq

i i−p+q,

otherwise with

j ̸= i− p+ q, Qq+1
i j = Qq

i j +Rq
i j :, i = p− q, p, j = 0, q,

Rq+1
i i−p+(q+1) = B−

p−(q+1)R
q
i i−p+q,
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Rq+1
i i−p+q = (B−

p−(q+1)(Q
q
i i−p+q−1 +Rq

i i−p+q−1)−B−
p−(q+1)A

−
p−(q+1)R

q
i i−p+q),

otherwise with j ̸= i− p+ (q + 1), j ̸= i− p+ q

Rq+1
i j = (B−

p−(q+1)(Q
q
i j−1 +Rq

i j−1)−B−
p−(q+1)A

−
p−(q+1)(Q

q
i j +Rq

i j)).

This formula can be proved by induction.
The required functions x(t) and u(t) are obviously obtained by formula of type (9) when

p = q.
Now a recurrent formula is obtained to express conditions imposed on xp(t) through (2), (3).

xj s
i = (X̃j,s)x

0 0
i +

p2∑
k=0

(Ũk
j,s)u

k 0
i , s = 0, p, j = 0, s+ p2 + 1, i = 0, l.

uj s
i = (X̂j,s)x

0 0
i +

p2∑
k=0

(Ûk
j,s)u

k 0
i , s = 0, p, j = 0, s+ p2, i = 0, l. (10)

zj s
i = (Xj,s)x

0 0
i +

p2∑
k=0

(U
k
j,s)u

k 0
i , s = 0, p, j = 0, s+ p2, i = 0, l.

Here X̃j,s, X̂j,s, Xj,s, Ũ
k
j,s, Û

k
j,s, U

k
j,s are some constant matrices depending on system matrices

A and B in the same way (9). The following recurrent formula is obtained from (5)

X̃0,0 = E, Ũk
0,0 = 0; X̂j,0 = 0 , Û j

j,0 = E, Ûk
j,0 = 0, if j ̸= k, k = 0, p2, j = 0, p2,

X̃j,0 = X̃j−1,0 + X̂j−1,0, Ũ
k
j,0 = Ũk

j−1,0 + Ûk
j−1,0, k = 0, p2, j = 1, p2,

X̃j,s+1 = Q(Bs)X̃j,s, Ũ
k
j,s+1 = Q(Bs)Ũ

k
j,s, X̂j,s+1 = (E−Q(Bs))X̃j,s, Û

k
j,s+1 = (E−Q(Bs))Ũ

k
j,s,

X̃s+p2+2,s+1 = AsX̃s+p2+1,s +BsX̂s+p2+1,s, Ũs+p2+2,s+1 = AsŨs+p2+1,s +BsÛs+p2+1,s,

s = 0, p− 1, j = 0, s+ p2 + 1

Xj,s = (I −B−
s Bs)X̂j,s, U

k
j,s = (I −B−

s Bs)Û
k
j,s, s = 0, p, j = 0, s+ p2.

It is evident that conditions imposed on xp(t) can be obtained by (10) with s = p.

3. Backward Path of Cascade Decompositioon Method
Let φ1(t), φ2(t), ..., φr(t) be linearly independent functions applied to determine function xp(t)
by the uncertainty coefficients method. A number of conditions imposed on xp(t) is denoted by
r . Matrix F is a matrix of the following form

F =



φ1(t0) φ2(t0) ... φr(t0)
φ1(t1) φ2(t1) ... φr(t1)

...

φ
(p2+p+2)
1 (t1) φ

(p2+p+2)
2 (t1) ... φ

(p2+p+2)
r (t1)

...

φ
(p2+p+2)
1 (ts) φ

(p2+p+2)
2 (ts) ... φ

(p2+p+2)
r (ts)


. (11)
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The limitation is a need of matrix F nonsingularity. Let matrix val be

val =



(x0 p
0 )1 (x0 p

0 )2 ... (x0 p
0 )n

...

(x0 p
l )1 (x0 p

l )2 ... (x0 p
l )n

...

(xp2+p+2 p
0 )1 (xp2+p+2 p

0 )2 ... (xp2+p+2 p
0 )n

...

(xp2+p+2 p
l )1 (xp2+p+2 p

l )2 ... (xp2+p+2 p
l )n


(12)

a matrix of imposed conditions of (7). Here, n is matrix dimension A of (1). Function xp(t) is
determined by the uncertainty coefficients method in the following form.

xp(t) = (φ(t) · a)T , (13)

with the use of its conditions (7). Here φi(t) : i = 1, r means some linear independent pre-set
functions, a is basis decomposition coefficient matrix xp(t) from φi(t) : i = 1, r . Matrix a can
be determined by a = F−1 · val. Hence,

xp(t) = (φ(t) · F−1 · val)T . (14)

Arguments for finding kernel functions zm(t) : m = 0, p with the uncertainty coefficient
method are the same. Fzm , valzm, φzm(t) : m = 0, p denote their respect matrices and functions.
Hence, the formula below is obtained for the kernel function.

zm(t) = (φzm(t) · F−1
zm · valzm)T . (15)

Subsequently, determined xp(t) and zm(t) : m = 0, p are placed into (9).

4. Example of System Solution For Boeing-747 movement
Bellow is an illustration of application of the desclosed method using an example of [13] which
shows the transition process for Boeing 747 heavy aircraft lateral motion model in a landing
configuration. Its shown that, having performed the cascade decomposition method once and
obtained necessary formulas, in the future when the edge conditions are changed, the new
solution will be completed much faster than when the cascade decomposition method is re-
solved. The linearized model of aircraft movement in the configuration used during landing
without an automatic stability improvement system has the following form [13]:



ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

 =



−0.089 −2.19 0.328 0.319 0 0
0.076 −0.217 −0.166 0 0 0
−0.602 0.327 −0.975 0 0 0

0 0.15 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0





x1
x2
x3
x4
x5
x6

+



0 −0.0327 0 0 0 0
0.0264 0.151 0 0 0 0
0.227 −0.0636 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





u1
u2
u3
u4
u5
u6

 . (16)

Here, the following symbols for phase variables are applied:
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x1 — rate of sideslip;
x2 — yawing rate;
x3 — rolling rate;
x4 — lateral attitude;
x5 — yawing angle;
x6 — lateral error.
The system controls are:
u1 — angle of aileron deflection;
u2 — angle of rudder deflection.
Here u3, u4, u5, u6 are imaginery control components to make the control matrix square.
The equations are written with the use of dimensionless values. 0.01 rad unit is accepted as

a unit for angles and 0.305 mps for rates.
To maintain the experimental integrity, conditions of types (2), (3) are not pre-imposed. The

general solution is obtained

x(t) = W 3
2 (x

3(t))
′′
+W 3

1 (x
3(t))

′
+W 3

0 (x
3(t))

+Q3
3 2(z

3(t))
′′
+Q3

3 1(z
3(t))

′
+Q3

3 0(z
3(t)) +Q3

2 1(z
2(t))

′
+Q3

2 0(z
2(t)) +Q3

1 0(z
1(t)),

y(t) = V 3
3 (x

3(t))
(3)

+ V 3
2 (x

3(t))
′′
+ V 3

1 (x
3(t))

′
+ V 3

0 (x
3(t))

+R3
3 3(z

3(t))
(3)

+R3
3 2(z

3(t))
′′
+R3

3 1(z
3(t))

′
+R3

3 0(z
3(t))+R3

2 2(z
2(t))

′′
+R3

2 1(z
2(t))

′
+R3

2 0(z
2(t))+

R3
1 1(z

1(t))
′
+R3

1 0(z
1(t)) +R3

0 0(z
0(t)).

Matrices of (9) have the following form. Below is a part of these matrices.

V 3
0 =



2.45 −1.48 4.45 −0.3 0.0 0.0
−0.97 1.8 0.31 0.25 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0


,

W 3
0 =



1.01 −0.21 0.02 −0.03 0.0 0.0
−0.03 1.0 −0.0 0.14 0.0 0.0
0.0 −0.0 1.0 −0.02 0.0 0.0
0.0 0.0 −0.0 1.0 0.0 0.0
0.0 0.09 −0.01 0.0 1.0 0.0
0.0 −0.02 0.0 0.0 0.0 1.0


,

Q3
2 0 =



1.01 0.0 −0.0 −0.03 0.0 0.0
−0.03 0.99 0.0 0.14 0.0 0.0
0.0 0.0 1.0 −0.02 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0

 ,

R3
1 0 =



2.39 −0.99 4.39 0.0 0.0 0.0
−0.92 1.61 0.33 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

 .
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Number p2 of (3) equals 0. Conditions imposed on function x3(t) and functions zm(t) : m =
0, 3 are expressed by the formula below.

xj 3
i = X̃j,3x

0 0
i + Ũ0

j,3u
0 0
i , j = 0, 4, i = 0, l,

zj s
i = Xj,sx

0 0
i + U

k
j,su

0 0
i , s = 0, 3, j = 0, s, i = 0, l.

There is an example of some matrices:

X̃0,3 =



0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.44 0.09 −0.01 −0.14 1.0 0.0
−0.09 −0.02 0.0 0.01 0.0 1.0

 ,

X̃1,3 =



0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

−0.03 −0.01 0.0 0.14 0.0 0.0
1.01 0.21 −0.02 −0.03 0.0 0.0

 ,

X̃2,3 =



0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.08 0.13 −0.01 0.0 0.0

−0.06 −2.26 0.29 0.32 0.0 0.0

 ,

Ũ0
3,3 =



0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.03 0.0 0.0 0.0 0.0 0.0
0.01 −0.36 0.0 0.0 0.0 0.0


.

Here basic functions φ(t) of (14) and φz0(t), φz1(t), φz2(t) of (15) have the following form

φ(t) =
(

sin(0.1t)
(t−60)2

, sin(0.2t)
(t−60)4

, cos(0.2t)
(t−60)3

, cos(0.1t)
(t−60) , cos(0.3t)

(t−60)5
, cos(0.3t)

(t−60)6
, sin(0.4t)

(t−60)8
, cos(0.4t)

(t−60)7

)
,

φz0(t) =
(

cos(0.1t)
(t−60.0)

sin(0.1t)
(t−60.0)2

)
, φz1(t) =

(
sin(0.2t)
(t−60.0)4

cos(0.2t)
(t−60.0)3

cos(0.1t)
(t−60.0)

sin(0.1t)
(t−60.0)2

)
,

φz2(t) =
(

cos(0.1t)
(t−60.0)

sin(0.2t)
(t−60.0)4

cos(0.2t)
(t−60.0)3

sin(0.1t)
(t−60.0)2

cos(0.3t)
(t−60.0)5

sin(0.3t)
(t−60.0)6

)
.

Matrix F of (14) and Fz0 , Fz1 , Fz2 of (15) are of the following form
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F =



3 · 10−4 −1.9 · 10−14 3.3 · 10−6 −0.01 0 0 0 0
0.0005 1.5 · 10−13 10−5 0.01 0 0 0 0

3.5 · 10−5 −1 · 10−14 1.6 · 10−6 0.001 0 0 0 0
2.4 · 10−6 2.1 · 10−14 −1.6 · 10−6 0.002 0 0 0 0
−8.3 · 10−7 0.0 5.7 · 10−8 10−3 0 0 0 0
−6.1 · 10−6 −2.1 · 10−14 −6.8 · 10−7 2.3 · 10−5 0 0 0 0
−3.9 · 10−7 2 · 10−15 −5.9 · 10−8 −6.8 · 10−6 0 0 0 0
−6.7 · 10−7 −1.3 · 10−14 −4.1 · 10−8 −2.1 · 10−5 0 0 0 0


+

+



0 0 0 0 1.5 · 10−7 8.4 · 10−13 3 · 10−9 9 · 10−12

0 0 0 0 −3 · 10−7 8.8 · 10−13 −9.3 · 10−9 −7 · 10−11

0 0 0 0 −1.7 · 10−9 −2.7 · 10−13 5 · 10−10 −2 · 10−11

0 0 0 0 −8.1 · 10−8 2.6 · 10−12 −2 · 10−9 6 · 10−11

0 0 0 0 −6.7 · 10−9 −2.2 · 10−13 −2 · 10−10 −5 · 10−12

0 0 0 0 −2.1 · 10−9 7 · 10−13 4.6 · 10−10 3 · 10−11

0 0 0 0 −10−9 −1.7 · 10−14 −9 · 10−11 5 · 10−13

0 0 0 0 3.1 · 10−9 −2 · 10−13 3 · 10−10 2 · 10−12


,

Fz0 =

(
−0.010806 0.000337
0.010404 0.000568

)
, Fz1 =


−0.010806 1.45 · 10−7 0.000337 3 · 10−6

0.010404 −2.95 · 10−7 0.000568 1 · 10−5

0.001467 −1.67 · 10−9 3.5 · 10−5 2 · 10−6

0.002533 −8.06 · 10−8 2 · 10−6 −2 · 10−6

 ,

Fz2 =



0.000 3.33 · 10−6 −0.01 1.45 · 10−7 3.17 · 10−9 9 · 10−12

0.0005 1.02 · 10−5 0.01 −2.96 · 10−7 −9.38 · 10−9 −6.8 · 10−11

3.51 · 10−5 1.65 · 10−6 0.001 −1.67 · 10−9 4.52 · 10−10 −1.8 · 10−11

2.4 · 10−6 −1.59 · 10−6 0.002 −8.06 · 10−8 −1.99 · 10−9 6 · 10−11

−8.29 · 10−7 5.73 · 10−8 0.0001 −6.78 · 10−9 −2.2 · 10−10 −5.2 · 10−12

−6.152 · 10−6 −6.86 · 10−7 2.26 · 10−5 −2.08 · 10−9 4.63 · 10−10 2.5 · 10−11

 .

It is required to solve the task to find a minimum limit for control function norm u(t) if the
system is imposed with the following conditions at two points t0 = 10, t1 = 20 [11]:

x1(10) = 13.0, x2(10) = 11.0, x3(10) = 8.0, x4(10) = 10.0, x5(10) = 12.0, x6(10) = 7.0,

x1(20) = x2(20) = x3(20) = ... = x6(20) = 0.0.u1(10) = u2(10) = u3(10) = ... = u6(10) = 0.0.,

u1(20) = u2(20) = u3(20) = ... = u6(20) = 0.0.

Then val, valz0 , valz1 , valz2 are recalculated with the use of (14) and (15). One can get

val =



0.0 0.0 0.0 0.0 17.2336648 5.6606009
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0108233 14.8664882
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.8606289 −20.0979801
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 −1.9104164 6.9242199
0.0 0.0 0.0 0.0 0.0 0.0


,
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valz0 =

(
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

)
, valz1 =


0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

 ,

valz2 =



0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 10−15 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

 .

From (14) x3(t) is determined and kernel functions zm(t) : m = 0, 3 are determined
using formula (15). Further, according to formula (9), prior state and control functions are
found. Then, using the cascade decomposition method, twelve new solutions of system (16) are
determined that satisfy zero boundary conditions of type (2), (3) when p2 = 1. These functions
will not be identical zeros since conditions are imposed on the second derivative of each of the
control functions, while one of these conditions is equal to 1 and the others are zeros. After that
a solution to problem (16) is found that satisfies the above conditions with a minimum norm of
control function [9]. A great time gain is obtained because only matrices val, valz0 , valz1 , valz2
are required to be re-calculated. The total time to find the described functions using a Python
program and the conventional cascade decomposition method is 62 seconds and 7.8 s with the
use of the disclosed method. Time to find the minimum control function norm is 58 s.

5. Conclusion
Thus, the use of the disclosed methods allows to simplify and accelerate the search of the
desired functions x(t) and u(t) because when changing conditions (2)–(3), it is sufficient to use
them in formula (10) and after calculating the conditions imposed on xp(t) and kernel functions
zm(t) : m = 0, p, find xp(t) by (14) and zm(t) : m = 0, p by (15) with further applying them in
(9). This leads to a high time gain in comparison with the conventional cascade decomposition
method. For example, when searching the minimum limit for the norm of a control function,
which is a solution to system (16), the gain is double with the use of the Python program.
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