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Abstract. We describe some operators for solving model elliptic pseudo-differential equations
in special canonical domains. It helps us to write a general solution of corresponding pseudo-
differential equation in an explicit form. Moreover, knowing a general solution we can choose
additional (possibly boundary) conditions to determine uniquely the solution. All considerations
we give in Sobolev–Slobodetskii spaces.

1. Introduction
For studying pseudo-differential equations on manifolds the main difficulty is to obtain
invertibility conditions for a model pseudo-differential equation in a so-called canonical domain.
Since a pseudo-differential operator is defined by its symbol which depends on two variables x and
ξ, we say “model operator” if its symbol does not depend on x. Further, canonical domains are
distinct in dependance on a type of manifold under consideration. So, for example, if we consider
a compact smooth manifold without a boundary then we deal with only one canonical domain,
i.e. Rm. The first singularity appears if the manifold has a smooth boundary then we need
to add one more canonical domain, it is a half-space Rm

+ = {x ∈ Rm : x = (x′, xm), xm > 0},
because our manifold is a half-space in a neighborhood of a boundary point. The last situation
was studied in details in the book [2]. But if our manifold has at least one conical point at a
boundary this method of rectification of a boundary does not work, and we have next type of a
singularity and next canonical domain, i.e. a cone.

This report is devoted to some studies of this case (see also [11–16]). Some other approaches
one can find, for example, in [7, 8].

2. Elliptic symbols and wave factorization
We will consider the operators in the Sobolev – Slobodetskii space Hs(Rm) with norm

||u||2s =
∫

Rm

|ũ(ξ)|2(1 + |ξ|)2sdξ,

where the sign “∼” over a function denotes its Fourier transform, ũ = Fu, and introduce the
following class of symbols non-depending on spatial variable x: ∃c1, c2 > 0, such that

c1 ≤ |A(ξ)(1 + |ξ|)−α| ≤ c2, ξ ∈ Rm. (1)
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The number α ∈ R we call the order of pseudo-differential operator A.
It is well-known that pseudo-differential operator with symbol A(ξ) satisfying (1) is a linear

bounded operator acting from Hs(Rm) into Hs−α(Rm) [2].
We are interested in studying invertibility of the operators in corresponding Sobolev –

Slobodetskii spaces. Let S(Rm) be the Schwartz space of infinitely differentiable rapidly
decreasing at infinity functions, C be a sharp convex cone non-including a whole straight line.
By definition, Hs(C) consists of distributions from Hs(Rm) with support in C. The norm in
the space Hs(C) is induced by the norm Hs(Rm). We consider the equation

(Au)(x) = f(x), x ∈ C, (2)

where right-hand side f is chosen from the space Hs−α
0 (C).

If S′(Rm) is the space of distributions over the S(Rm) then S′(C) denotes the space of
distributions from S′(Rm) with support in C, and Hs

0(C) is the space of distributions S′(C),
which admit continuation onto Hs(Rm). The norm in Hs

0(C) is defined by

||f ||+s = inf ||lf ||s,

where infimum is chosen for all possible continuations lf .
Below we will consider the symbols A(ξ) satisfying the condition (1).

Let us denote by
∗
C the conjugate cone

∗
C= {x ∈ Rm : x · y > 0, ∀y ∈ C}.

Definition Wave factorization of symbol A(ξ) with respect to the cone C is called its
representation in the form

A(ξ) = A̸=(ξ)A=(ξ),

where the factors A̸=(ξ), A=(ξ) satisfy the following conditions:

1) A̸=(ξ), A=(ξ) are defined everywhere, may be except the points {ξ ∈ Rm : ξ ∈ ∂(
∗
C ∪(−

∗
C

))};
2) A̸=(ξ), A=(ξ) admit an analytical continuation into radial tube domains

T (
∗
C), T (−

∗
C) respectively, which satisfy the estimates

|A±1
̸= (ξ + iτ)| ≤ c1(1 + |ξ|+ |τ |)±æ,

|A±1
= (ξ − iτ)| ≤ c2(1 + |ξ|+ |τ |)±(α−æ), ∀τ ∈

∗
C .

The number æ is called the index of wave factorization.

3. Transmutation operators and solvability
Let the boundary surface of the cone C be a function xm = φ(x′), where φ ∈ C∞(Rm−1 \ {0})
is a homogeneous function of order 1. We will introduce the following change of variables

t1 = x1
t2 = x2
· · ·

tm−1 = xm−1

tm = xm − φ(x′)

(3)

and denote this operator by Tφ : Rm → Rm.
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Theorem The following relation holds

FTφu = VφFu,

where Vφ is the following operator

(Vφũ)(ξ) =
1

(2π)m

∫
Rm

∫
Rm

ei(t−y)·ξeiφ(t
′)ξm ũ(y)dydt.

Proof. Indeed,

(FTφu)(ξ) =

∫
Rm

eix·ξ(Tφu)(x)dx,

and after change of variables (3)

(FTφu)(ξ) =

∫
Rm

eit
′·ξ′eiφ(t

′)ξmeitmξmu(t)dt,

and taking into account

u(t) =
1

(2π)m

∫
Rm

e−iy·tũ(y)dy,

we can write

(Vφũ)(ξ) =
1

(2π)m

∫
Rm

∫
Rm

ei(t−y)·ξeiφ(t
′)ξm ũ(y)dydt

△
Remark. This is very similar to a definition of Fourier integral operators [4, 9, 10].
For concrete cones it is possible to calculate such operators, but before we will give the main

theorem.
To formulate this theorem we will introduce a special integral operator [11]

(Gmu)(x) = lim
τ→0

∫
Rm

B(x− y + iτ)u(y)dy, τ ∈
∗
C,

where B(z) is the Bochner kernel [1, 17]

B(z) =

∫
C

eix·zdx, z = ξ + iτ, τ ∈
∗
C .

Theorem Let æ − s = n + δ with n ∈ N and |δ| < 1/2. A general solution of the equation
(2) in Fourier image is given by the formula

ũ(ξ) = A−1
̸= (ξ)Q(ξ)GmQ−1(ξ)A−1

= (ξ)l̃f(ξ)+

+A−1
̸= (ξ)V −1

φ F

(
n∑

k=1

ck(x
′)δ(k−1)(xm)

)
,

where ck(x
′) ∈ Hsk(Rm−1) are arbitrary functions, sk = s−æ+ k− 1/2, k = 1, 2, ..., n, lf is an

arbitrary continuation of f onto Hs−α(Rm), Q(ξ) is an arbitrary polynomial satisfying (1) for
α = n.
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The a priori estimate holds

||u||s ≤ C(||f ||+s−α + [ck]sk),

where [·]sk denotes Hsk(Rm−1)-norm.
Remark. It is easily verified that

V −1
φ = FT−φ

(see, for example, [15]).

4. Examples
We will give some calculations for the operator Vφ for two concrete cones.

4.1. A flat case
Let us consider the case m = 2 in details. This case admits only single sharp convex cone of the
following type

Ca
+ = {x ∈ R2 : x = (x1, x2), x2 > a|x1|, a > 0}.

So we have

(FTφu)(ξ) =

+∞∫
−∞

eia|y1|ξ2eiy1ξ1 û(y1, ξ2)dy1 =

=

+∞∫
−∞

χ+(y1)e
iay1ξ2eiy1ξ1 û(y1, ξ2)dy1 +

+∞∫
−∞

χ−(y1)e
−iay1ξ2eiy1ξ1 û(y1, ξ2)dy1 =

=

+∞∫
−∞

χ+(y1)e
iy1(aξ2+ξ1)û(y1, ξ2)dy1 +

+∞∫
−∞

χ−(y1)e
−iy1(aξ2−ξ1)û(y1, ξ2)dy1,

where û(y1, ξ2) denotes one-dimensional Fourier transform on the last variable.
The last two summands are the Fourier transforms of functions

χ+(y1)û(y1, ξ2), χ+(y1)û(y1, ξ2)

with respect to the first variable y1 respectively. So we can use the following properties [2] (these
are Sokhotskii formulas [3, 6])

+∞∫
−∞

χ+(x)e
ixξu(x)dx =

1

2
ũ(ξ) + v.p.

i

2π

+∞∫
−∞

ũ(η)dη

ξ − η
,

+∞∫
−∞

χ−(x)e
ixξu(x)dx =

1

2
ũ(ξ)− v.p.

i

2π

+∞∫
−∞

ũ(η)dη

ξ − η
.

Taking into account these properties we have

(FTφu)(ξ) =
ũ(ξ1 + aξ2, ξ2) + ũ(ξ1 − aξ2, ξ2)

2
+

+v.p.
i

2π

+∞∫
−∞

ũ(η, ξ2)dη

ξ1 + aξ2 − η
− v.p.

i

2π

+∞∫
−∞

ũ(η, ξ2)dη

ξ1 − aξ2 − η
≡ (Vφũ)(ξ).
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4.2. A spatial case
There are a lot of sharp convex cones in a space, and we consider here m = 3 and the following
cone

Ca
+ = {x ∈ R3 : x = (x1, x2, x3), x3 > a1|x1|+ a2|x2|, a1, a2 > 0}.

For calculating the operator Vφ we evaluate∫
R2

ei(a1|y1|+a2|y2|)ξ3ei(y1ξ1+y2ξ2)û(y1, y2, ξ3)dy1dy2 =

=

+∞∫
−∞

ei(a1|y1|ξ3+y1ξ1)(

+∞∫
−∞

ei(a2|y2|ξ3+y2ξ2)û(y1, y2, ξ3)dy2dy1 =

=

+∞∫
−∞

ei(a1|y1|ξ3+y1ξ1)(
ˆ̂u(y1, ξ2 − a2ξ3, ξ3) + ˆ̂u(y1, ξ2 + a2ξ3, ξ3)

2
+

+v.p.
i

2π

+∞∫
−∞

ˆ̂u(y1, η, ξ3)dη

ξ2 + a2ξ3 − η
− v.p.

i

2π

+∞∫
−∞

ˆ̂u(y1, η, ξ3)dη

ξ2 − a2ξ3 − η
)dy1,

where ˆ̂u denotes the Fourier transform with respect to the two last variables.
Let us denote

v1(ξ) =
1

2

+∞∫
−∞

ei(a1|y1|ξ3+y1ξ1) ˆ̂u(y1, ξ2 − a2ξ3, ξ3)dy1,

v2(ξ) =
1

2

+∞∫
−∞

ei(a1|y1|ξ3+y1ξ1) ˆ̂u(y1, ξ2 + a2ξ3, ξ3)dy1,

w1(ξ) =

+∞∫
−∞

ei(a1|y1|ξ3+y1ξ1)(S2
ˆ̂u)(y1, ξ2 + a2ξ3, ξ3)dy1,

w2(ξ) =

+∞∫
−∞

ei(a1|y1|ξ3+y1ξ1)(S2
ˆ̂u)(y1, ξ2 − a2ξ3, ξ3)dy1,

where

(S2u)(ξ1, ξ2, ξ3) = v.p
i

2π

+∞∫
−∞

u(ξ1, η, ξ3)dη

ξ2 − η
.

Further, taking into account the fact
ˆ̂
û ≡ ũ and the relation

(S1u)(ξ1, ξ2, ξ3) = v.p
i

2π

+∞∫
−∞

u(τ, ξ2, ξ3)dτ

ξ1 − τ
,

we obtain ∫
R2

ei(a1|y1|+a2|y2|)ξ3ei(y1ξ1+y2ξ2)û(y1, y2, ξ3)dy1dy2 =
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=
ũ(ξ1 − a1ξ3, ξ2 − a2ξ3, ξ3) + ũ(ξ1 + a1ξ3, ξ2 − a2ξ3, ξ3)

4
+

+
1

2
(S1ũ)(ξ1 + a1ξ3, ξ2 − a2ξ3, ξ3)−

1

2
(S1ũ)(ξ1 − a1ξ3, ξ2 − a2ξ3, ξ3)+

+
ũ(ξ1 − a1ξ3, ξ2 + a2ξ3, ξ3) + ũ(ξ1 + a1ξ3, ξ2 + a2ξ3, ξ3)

4
+

+
1

2
(S1ũ)(ξ1 + a1ξ3, ξ2 + a2ξ3, ξ3)−

1

2
(S1ũ)(ξ1 − a1ξ3, ξ2 + a2ξ3, ξ3)+

+
(S2ũ)(ξ1 − a1ξ3, ξ2 + a2ξ3, ξ3) + (S2ũ)(ξ1 + a1ξ3, ξ2 + a2ξ3, ξ3)

2
+

+(S1S2ũ)(ξ1 + a1ξ3, ξ2 + a2ξ3, ξ3)− (S1S2ũ)(ξ1 − a1ξ3, ξ2 + a2ξ3, ξ3)−

−(S2ũ)(ξ1 − a1ξ3, ξ2 − a2ξ3, ξ3) + (S2ũ)(ξ1 + a1ξ3, ξ2 − a2ξ3, ξ3)

2
−

−(S1S2ũ)(ξ1 + a1ξ3, ξ2 − a2ξ3, ξ3) + (S1S2ũ)(ξ1 − a1ξ3, ξ2 − a2ξ3, ξ3).

Thus, we see that the operator Vφ is composed from operators S1, S2 and certain change of
variables.
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