On some pseudo-differential equations and transmutation operators

To cite this article: Vladimir Vasilyev 2020 J. Phys.: Conf. Ser. 1479012009

You may also like

An omnidirectional seismic image extension
 Fons ten Kroode
 Stabilizing inverse problems by internal data
 Peter Kuchment and Dustin Steinhauer

Spectral analysis of the interior transmission eigenvalue problem Luc Robbiano

View the article online for updates and enhancements

On some pseudo-differential equations and transmutation operators

Vladimir Vasilyev
Chair of Applied Mathematics and Computer Modeling, Belgorod State National Research University, Pobedy street 85, Belgorod 308015, Russia
E-mail: vladimir.b.vasilyev@gmail.com

Abstract

We describe some operators for solving model elliptic pseudo-differential equations in special canonical domains. It helps us to write a general solution of corresponding pseudodifferential equation in an explicit form. Moreover, knowing a general solution we can choose additional (possibly boundary) conditions to determine uniquely the solution. All considerations we give in Sobolev-Slobodetskii spaces.

1. Introduction

For studying pseudo-differential equations on manifolds the main difficulty is to obtain invertibility conditions for a model pseudo-differential equation in a so-called canonical domain. Since a pseudo-differential operator is defined by its symbol which depends on two variables x and ξ, we say "model operator" if its symbol does not depend on x. Further, canonical domains are distinct in dependance on a type of manifold under consideration. So, for example, if we consider a compact smooth manifold without a boundary then we deal with only one canonical domain, i.e. \mathbf{R}^{m}. The first singularity appears if the manifold has a smooth boundary then we need to add one more canonical domain, it is a half-space $\mathbf{R}_{+}^{m}=\left\{x \in \mathbf{R}^{m}: x=\left(x^{\prime}, x_{m}\right), x_{m}>0\right\}$, because our manifold is a half-space in a neighborhood of a boundary point. The last situation was studied in details in the book [2]. But if our manifold has at least one conical point at a boundary this method of rectification of a boundary does not work, and we have next type of a singularity and next canonical domain, i.e. a cone.

This report is devoted to some studies of this case (see also [11-16]). Some other approaches one can find, for example, in $[7,8]$.

2. Elliptic symbols and wave factorization

We will consider the operators in the Sobolev - Slobodetskii space $H^{s}\left(\mathbf{R}^{m}\right)$ with norm

$$
\|u\|_{s}^{2}=\int_{\mathbf{R}^{m}}|\tilde{u}(\xi)|^{2}(1+|\xi|)^{2 s} d \xi
$$

where the sign " \sim " over a function denotes its Fourier transform, $\tilde{u}=F u$, and introduce the following class of symbols non-depending on spatial variable x : $\exists c_{1}, c_{2}>0$, such that

$$
\begin{equation*}
c_{1} \leq\left|A(\xi)(1+|\xi|)^{-\alpha}\right| \leq c_{2}, \quad \xi \in \mathbf{R}^{m} \tag{1}
\end{equation*}
$$

The number $\alpha \in \mathbf{R}$ we call the order of pseudo-differential operator A.
It is well-known that pseudo-differential operator with symbol $A(\xi)$ satisfying (1) is a linear bounded operator acting from $H^{s}\left(\mathbf{R}^{m}\right)$ into $H^{s-\alpha}\left(\mathbf{R}^{m}\right)$ [2].

We are interested in studying invertibility of the operators in corresponding Sobolev Slobodetskii spaces. Let $S\left(\mathbf{R}^{m}\right)$ be the Schwartz space of infinitely differentiable rapidly decreasing at infinity functions, C be a sharp convex cone non-including a whole straight line. By definition, $H^{s}(C)$ consists of distributions from $H^{s}\left(\mathbf{R}^{m}\right)$ with support in \bar{C}. The norm in the space $H^{s}(C)$ is induced by the norm $H^{s}\left(\mathbf{R}^{m}\right)$. We consider the equation

$$
\begin{equation*}
(A u)(x)=f(x), x \in C, \tag{2}
\end{equation*}
$$

where right-hand side f is chosen from the space $H_{0}^{s-\alpha}(C)$.
If $S^{\prime}\left(\mathbf{R}^{m}\right)$ is the space of distributions over the $S\left(\mathbf{R}^{m}\right)$ then $S^{\prime}(C)$ denotes the space of distributions from $S^{\prime}\left(\mathbf{R}^{m}\right)$ with support in \bar{C}, and $H_{0}^{s}(C)$ is the space of distributions $S^{\prime}(C)$, which admit continuation onto $H^{s}\left(\mathbf{R}^{m}\right)$. The norm in $H_{0}^{s}(C)$ is defined by

$$
\|f\|_{s}^{+}=\inf \|l f\|_{s},
$$

where infimum is chosen for all possible continuations $l f$.
Below we will consider the symbols $A(\xi)$ satisfying the condition (1).
Let us denote by $\stackrel{*}{C}$ the conjugate cone

$$
\stackrel{*}{C}=\left\{x \in \mathbf{R}^{m}: x \cdot y>0, \forall y \in C\right\} .
$$

Definition Wave factorization of symbol $A(\xi)$ with respect to the cone C is called its representation in the form

$$
A(\xi)=A_{\neq}(\xi) A_{=}(\xi)
$$

where the factors $A_{\neq}(\xi), A_{=}(\xi)$ satisfy the following conditions:

1) $A_{\neq}(\xi), A_{=}(\xi)$ are defined everywhere, may be except the points $\left\{\xi \in \mathbf{R}^{m}: \xi \in \partial(\stackrel{*}{C} \cup(-\stackrel{*}{C}\right.$)) $\}$;
2) $A_{\neq}(\xi), A_{=}(\xi)$ admit an analytical continuation into radial tube domains $T(\stackrel{*}{C}), T(-\stackrel{*}{C})$ respectively, which satisfy the estimates

$$
\begin{gathered}
\left|A_{\neq}^{ \pm 1}(\xi+i \tau)\right| \leq c_{1}(1+|\xi|+|\tau|)^{ \pm x} \\
\left|A_{\equiv}^{ \pm 1}(\xi-i \tau)\right| \leq c_{2}(1+|\xi|+|\tau|)^{ \pm(\alpha-æ)}, \forall \tau \in \stackrel{*}{C} .
\end{gathered}
$$

The number $æ$ is called the index of wave factorization.

3. Transmutation operators and solvability

Let the boundary surface of the cone C be a function $x_{m}=\varphi\left(x^{\prime}\right)$, where $\varphi \in C^{\infty}\left(\mathbf{R}^{m-1} \backslash\{0\}\right)$ is a homogeneous function of order 1 . We will introduce the following change of variables

$$
\left\{\begin{align*}
t_{1} & =x_{1} \tag{3}\\
t_{2} & =x_{2} \\
\cdots & \\
t_{m-1} & =x_{m-1} \\
t_{m} & =x_{m}-\varphi\left(x^{\prime}\right)
\end{align*}\right.
$$

and denote this operator by $T_{\varphi}: \mathbf{R}^{m} \rightarrow \mathbf{R}^{m}$.

Theorem The following relation holds

$$
F T_{\varphi} u=V_{\varphi} F u,
$$

where V_{φ} is the following operator

$$
\left(V_{\varphi} \tilde{u}\right)(\xi)=\frac{1}{(2 \pi)^{m}} \int_{\mathbf{R}^{m}} \int_{\mathbf{R}^{m}} e^{i(t-y) \cdot \xi} e^{i \varphi\left(t^{\prime}\right) \xi_{m}} \tilde{u}(y) d y d t
$$

Proof. Indeed,

$$
\left(F T_{\varphi} u\right)(\xi)=\int_{\mathbf{R}^{m}} e^{i x \cdot \xi}\left(T_{\varphi} u\right)(x) d x
$$

and after change of variables (3)

$$
\left(F T_{\varphi} u\right)(\xi)=\int_{\mathbf{R}^{m}} e^{i t^{\prime} \cdot \xi^{\prime}} e^{i \varphi\left(t^{\prime}\right) \xi_{m}} e^{i t_{m} \xi_{m}} u(t) d t
$$

and taking into account

$$
u(t)=\frac{1}{(2 \pi)^{m}} \int_{\mathbf{R}^{m}} e^{-i y \cdot t} \tilde{u}(y) d y
$$

we can write

$$
\left(V_{\varphi} \tilde{u}\right)(\xi)=\frac{1}{(2 \pi)^{m}} \int_{\mathbf{R}^{m}} \int_{\mathbf{R}^{m}} e^{i(t-y) \cdot \xi} e^{i \varphi\left(t^{\prime}\right) \xi_{m}} \tilde{u}(y) d y d t
$$

Remark. This is very similar to a definition of Fourier integral operators $[4,9,10]$.
For concrete cones it is possible to calculate such operators, but before we will give the main theorem.

To formulate this theorem we will introduce a special integral operator [11]

$$
\left(G_{m} u\right)(x)=\lim _{\tau \rightarrow 0} \int_{\mathbf{R}^{m}} B(x-y+i \tau) u(y) d y, \quad \tau \in \stackrel{*}{C}
$$

where $B(z)$ is the Bochner kernel $[1,17]$

$$
B(z)=\int_{C} e^{i x \cdot z} d x, \quad z=\xi+i \tau, \quad \tau \in \stackrel{*}{C} .
$$

Theorem Let $æ-s=n+\delta$ with $n \in \mathbf{N}$ and $|\delta|<1 / 2$. A general solution of the equation (2) in Fourier image is given by the formula

$$
\begin{aligned}
& \tilde{u}(\xi)=A_{\neq}^{-1}(\xi) Q(\xi) G_{m} Q^{-1}(\xi) A_{=}^{-1}(\xi) \tilde{l} f(\xi)+ \\
& \quad+A_{\neq}^{-1}(\xi) V_{\varphi}^{-1} F\left(\sum_{k=1}^{n} c_{k}\left(x^{\prime}\right) \delta^{(k-1)}\left(x_{m}\right)\right)
\end{aligned}
$$

where $c_{k}\left(x^{\prime}\right) \in H^{s_{k}}\left(\mathbf{R}^{m-1}\right)$ are arbitrary functions, $s_{k}=s-æ+k-1 / 2, k=1,2, \ldots$, n, lf is an arbitrary continuation of f onto $H^{s-\alpha}\left(\mathbf{R}^{m}\right), Q(\xi)$ is an arbitrary polynomial satisfying (1) for $\alpha=n$.

The a priori estimate holds

$$
\|u\|_{s} \leq C\left(\|f\|_{s-\alpha}^{+}+\left[c_{k}\right]_{s_{k}}\right),
$$

where $[\cdot]_{s_{k}}$ denotes $H^{s_{k}}\left(\mathbf{R}^{m-1}\right)$-norm.
Remark. It is easily verified that

$$
V_{\varphi}^{-1}=F T_{-\varphi}
$$

(see, for example, [15]).

4. Examples

We will give some calculations for the operator V_{φ} for two concrete cones.

4.1. A flat case

Let us consider the case $m=2$ in details. This case admits only single sharp convex cone of the following type

$$
C_{+}^{a}=\left\{x \in \mathbf{R}^{2}: x=\left(x_{1}, x_{2}\right), x_{2}>a\left|x_{1}\right|, a>0\right\} .
$$

So we have

$$
\begin{gathered}
\left(F T_{\varphi} u\right)(\xi)=\int_{-\infty}^{+\infty} e^{i a\left|y_{1}\right| \xi_{2}} e^{i y_{1} \xi_{1}} \hat{u}\left(y_{1}, \xi_{2}\right) d y_{1}= \\
=\int_{-\infty}^{+\infty} \chi_{+}\left(y_{1}\right) e^{i a y_{1} \xi_{2}} e^{i y_{1} \xi_{1}} \hat{u}\left(y_{1}, \xi_{2}\right) d y_{1}+\int_{-\infty}^{+\infty} \chi_{-}\left(y_{1}\right) e^{-i a y_{1} \xi_{2}} e^{i y_{1} \xi_{1}} \hat{u}\left(y_{1}, \xi_{2}\right) d y_{1}= \\
=\int_{-\infty}^{+\infty} \chi_{+}\left(y_{1}\right) e^{i y_{1}\left(a \xi_{2}+\xi_{1}\right)} \hat{u}\left(y_{1}, \xi_{2}\right) d y_{1}+\int_{-\infty}^{+\infty} \chi_{-}\left(y_{1}\right) e^{-i y_{1}\left(a \xi_{2}-\xi_{1}\right.} \hat{u}\left(y_{1}, \xi_{2}\right) d y_{1},
\end{gathered}
$$

where $\hat{u}\left(y_{1}, \xi_{2}\right)$ denotes one-dimensional Fourier transform on the last variable.
The last two summands are the Fourier transforms of functions

$$
\chi_{+}\left(y_{1}\right) \hat{u}\left(y_{1}, \xi_{2}\right), \quad \chi_{+}\left(y_{1}\right) \hat{u}\left(y_{1}, \xi_{2}\right)
$$

with respect to the first variable y_{1} respectively. So we can use the following properties [2] (these are Sokhotskii formulas $[3,6]$)

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} \chi_{+}(x) e^{i x \xi} u(x) d x=\frac{1}{2} \tilde{u}(\xi)+v \cdot p \cdot \frac{i}{2 \pi} \int_{-\infty}^{+\infty} \frac{\tilde{u}(\eta) d \eta}{\xi-\eta} \\
& \int_{-\infty}^{+\infty} \chi_{-}(x) e^{i x \xi} u(x) d x=\frac{1}{2} \tilde{u}(\xi)-v \cdot p \cdot \frac{i}{2 \pi} \int_{-\infty}^{+\infty} \frac{\tilde{u}(\eta) d \eta}{\xi-\eta} .
\end{aligned}
$$

Taking into account these properties we have

$$
\begin{gathered}
\left(F T_{\varphi} u\right)(\xi)=\frac{\tilde{u}\left(\xi_{1}+a \xi_{2}, \xi_{2}\right)+\tilde{u}\left(\xi_{1}-a \xi_{2}, \xi_{2}\right)}{2}+ \\
+v \cdot p \cdot \frac{i}{2 \pi} \int_{-\infty}^{+\infty} \frac{\tilde{u}\left(\eta, \xi_{2}\right) d \eta}{\xi_{1}+a \xi_{2}-\eta}-v \cdot p \cdot \frac{i}{2 \pi} \int_{-\infty}^{+\infty} \frac{\tilde{u}\left(\eta, \xi_{2}\right) d \eta}{\xi_{1}-a \xi_{2}-\eta} \equiv\left(V_{\varphi} \tilde{u}\right)(\xi) .
\end{gathered}
$$

4.2. A spatial case

There are a lot of sharp convex cones in a space, and we consider here $m=3$ and the following cone

$$
C_{+}^{\mathbf{a}}=\left\{x \in \mathbf{R}^{3}: x=\left(x_{1}, x_{2}, x_{3}\right), x_{3}>a_{1}\left|x_{1}\right|+a_{2}\left|x_{2}\right|, a_{1}, a_{2}>0\right\}
$$

For calculating the operator V_{φ} we evaluate

$$
\begin{gathered}
\int_{\mathbf{R}^{2}} e^{i\left(a_{1}\left|y_{1}\right|+a_{2}\left|y_{2}\right|\right) \xi_{3}} e^{i\left(y_{1} \xi_{1}+y_{2} \xi_{2}\right)} \hat{u}\left(y_{1}, y_{2}, \xi_{3}\right) d y_{1} d y_{2}= \\
=\int_{-\infty}^{+\infty} e^{i\left(a_{1}\left|y_{1}\right| \xi_{3}+y_{1} \xi_{1}\right)}\left(\int_{-\infty}^{+\infty} e^{i\left(a_{2}\left|y_{2}\right| \xi_{3}+y_{2} \xi_{2}\right)} \hat{u}\left(y_{1}, y_{2}, \xi_{3}\right) d y_{2} d y_{1}=\right. \\
=\int_{-\infty}^{+\infty} e^{i\left(a_{1}\left|y_{1}\right| \xi_{3}+y_{1} \xi_{1}\right)}\left(\frac{\hat{\hat{u}}\left(y_{1}, \xi_{2}-a_{2} \xi_{3}, \xi_{3}\right)+\hat{\hat{u}}\left(y_{1}, \xi_{2}+a_{2} \xi_{3}, \xi_{3}\right)}{2}+\right. \\
\left.+v \cdot p \cdot \frac{i}{2 \pi} \int_{-\infty}^{+\infty} \frac{\hat{\hat{u}}\left(y_{1}, \eta, \xi_{3}\right) d \eta}{\xi_{2}+a_{2} \xi_{3}-\eta}-v \cdot p \cdot \frac{i}{2 \pi} \int_{-\infty}^{+\infty} \frac{\hat{\hat{u}}\left(y_{1}, \eta, \xi_{3}\right) d \eta}{\xi_{2}-a_{2} \xi_{3}-\eta}\right) d y_{1}
\end{gathered}
$$

where $\hat{\hat{u}}$ denotes the Fourier transform with respect to the two last variables.
Let us denote

$$
\begin{aligned}
v_{1}(\xi)= & \frac{1}{2} \int_{-\infty}^{+\infty} e^{i\left(a_{1}\left|y_{1}\right| \xi_{3}+y_{1} \xi_{1}\right)} \hat{\hat{u}}\left(y_{1}, \xi_{2}-a_{2} \xi_{3}, \xi_{3}\right) d y_{1} \\
v_{2}(\xi)= & \frac{1}{2} \int_{-\infty}^{+\infty} e^{i\left(a_{1}\left|y_{1}\right| \xi_{3}+y_{1} \xi_{1}\right)} \hat{\hat{u}}\left(y_{1}, \xi_{2}+a_{2} \xi_{3}, \xi_{3}\right) d y_{1} \\
w_{1}(\xi)= & \int_{-\infty}^{+\infty} e^{i\left(a_{1}\left|y_{1}\right| \xi_{3}+y_{1} \xi_{1}\right)}\left(S_{2} \hat{\hat{u}}\right)\left(y_{1}, \xi_{2}+a_{2} \xi_{3}, \xi_{3}\right) d y_{1} \\
w_{2}(\xi)= & \int_{-\infty}^{+\infty} e^{i\left(a_{1}\left|y_{1}\right| \xi_{3}+y_{1} \xi_{1}\right)}\left(S_{2} \hat{\hat{u}}\right)\left(y_{1}, \xi_{2}-a_{2} \xi_{3}, \xi_{3}\right) d y_{1}
\end{aligned}
$$

where

$$
\left(S_{2} u\right)\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=v \cdot p \frac{i}{2 \pi} \int_{-\infty}^{+\infty} \frac{u\left(\xi_{1}, \eta, \xi_{3}\right) d \eta}{\xi_{2}-\eta}
$$

Further, taking into account the fact $\hat{\hat{u}} \equiv \tilde{u}$ and the relation

$$
\left(S_{1} u\right)\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=v \cdot p \frac{i}{2 \pi} \int_{-\infty}^{+\infty} \frac{u\left(\tau, \xi_{2}, \xi_{3}\right) d \tau}{\xi_{1}-\tau}
$$

we obtain

$$
\int_{\mathbf{R}^{2}} e^{i\left(a_{1}\left|y_{1}\right|+a_{2}\left|y_{2}\right|\right) \xi_{3}} e^{i\left(y_{1} \xi_{1}+y_{2} \xi_{2}\right)} \hat{u}\left(y_{1}, y_{2}, \xi_{3}\right) d y_{1} d y_{2}=
$$

$$
\begin{gathered}
=\frac{\tilde{u}\left(\xi_{1}-a_{1} \xi_{3}, \xi_{2}-a_{2} \xi_{3}, \xi_{3}\right)+\tilde{u}\left(\xi_{1}+a_{1} \xi_{3}, \xi_{2}-a_{2} \xi_{3}, \xi_{3}\right)}{4}+ \\
+\frac{1}{2}\left(S_{1} \tilde{u}\right)\left(\xi_{1}+a_{1} \xi_{3}, \xi_{2}-a_{2} \xi_{3}, \xi_{3}\right)-\frac{1}{2}\left(S_{1} \tilde{u}\right)\left(\xi_{1}-a_{1} \xi_{3}, \xi_{2}-a_{2} \xi_{3}, \xi_{3}\right)+ \\
\quad+\frac{\tilde{u}\left(\xi_{1}-a_{1} \xi_{3}, \xi_{2}+a_{2} \xi_{3}, \xi_{3}\right)+\tilde{u}\left(\xi_{1}+a_{1} \xi_{3}, \xi_{2}+a_{2} \xi_{3}, \xi_{3}\right)}{4}+ \\
+\frac{1}{2}\left(S_{1} \tilde{u}\right)\left(\xi_{1}+a_{1} \xi_{3}, \xi_{2}+a_{2} \xi_{3}, \xi_{3}\right)-\frac{1}{2}\left(S_{1} \tilde{u}\right)\left(\xi_{1}-a_{1} \xi_{3}, \xi_{2}+a_{2} \xi_{3}, \xi_{3}\right)+ \\
+\frac{\left(S_{2} \tilde{u}\right)\left(\xi_{1}-a_{1} \xi_{3}, \xi_{2}+a_{2} \xi_{3}, \xi_{3}\right)+\left(S_{2} \tilde{u}\right)\left(\xi_{1}+a_{1} \xi_{3}, \xi_{2}+a_{2} \xi_{3}, \xi_{3}\right)}{2}+ \\
+\left(S_{1} S_{2} \tilde{u}\right)\left(\xi_{1}+a_{1} \xi_{3}, \xi_{2}+a_{2} \xi_{3}, \xi_{3}\right)-\left(S_{1} S_{2} \tilde{u}\right)\left(\xi_{1}-a_{1} \xi_{3}, \xi_{2}+a_{2} \xi_{3}, \xi_{3}\right)- \\
-\frac{\left(S_{2} \tilde{u}\right)\left(\xi_{1}-a_{1} \xi_{3}, \xi_{2}-a_{2} \xi_{3}, \xi_{3}\right)+\left(S_{2} \tilde{u}\right)\left(\xi_{1}+a_{1} \xi_{3}, \xi_{2}-a_{2} \xi_{3}, \xi_{3}\right)}{2}- \\
-\left(S_{1} S_{2} \tilde{u}\right)\left(\xi_{1}+a_{1} \xi_{3}, \xi_{2}-a_{2} \xi_{3}, \xi_{3}\right)+\left(S_{1} S_{2} \tilde{u}\right)\left(\xi_{1}-a_{1} \xi_{3}, \xi_{2}-a_{2} \xi_{3}, \xi_{3}\right) .
\end{gathered}
$$

Thus, we see that the operator V_{φ} is composed from operators S_{1}, S_{2} and certain change of variables.

Acknowledgements. This work was supported by the State contract of the Russian Ministry of Education and Science (contract No 1.7311.2017/8.9).

References

[1] Bochner S and Martin W T 1948 Several Complex Variables (Princeton: Princeton Univ. Press)
[2] Eskin G 1981 Boundary Value Problems for Elliptic Pseudodifferential Equations (Providence, RI: Amer. Math. Soc.)
[3] Gakhov F D 1981 Boundary Value Problems (Mineola, NY: Dover Publications)
[4] Hörmander L 1985 The Analysis of Linear Partial Differential Operators III,IV (Berlin-Heidelberg: Springer)
[5] Milkhin, S.G., Prößdorf, S.: Singular Integral Operators. Akademie-Verlag, Berlin (1986)
[6] Muskhelishvili, N.I.: Singular Integral Equations. North Holland, Amsterdam (1976)
[7] Nazarov S A and Plamenevsky B A 1994 Elliptic Problems in Domains with Piecewise Smooth Boundaries(Berlin- New York: Walter de Gruyter)
[8] Schulze B W, Sternin B and Shatalov V 1998 Differential Equations on Singular Manifolds: Semiclassical Theory and Operator Algebras (Berlin: Wiley-VCH)
[9] Taylor M 1981 Pseudodifferential Operators (Princeton: Princeton Univ. Press)
[10] Treves F 1980: Introduction to Pseudodifferential Operators and Fourier Integral Operators (New york: Springer)
[11] Vasil'ev V B 2000 Wave Factorization of Elliptic Symbols: Theory and Applications. Introduction to the Theory of Boundary Value Problems in Non-Smooth Domains (Dordrecht-Boston-London: Kluwer Academic Publishers)
[12] Vasilyev V B 2013 Differential and Difference Equations (and Applications (Springer Proc. Math. \& Stat. 47), ed S Pinelas (Berlin: Springer) p 625-637
[13] Vasilyev V B 2014 Adv. Dyn. Syst. Appl. 9 227-237
[14] Vasilyev V B 2015 Integral Methods in Science and Engineering Proc. IMSE Conference, Karlsruhe, Germany, 2014 ed C Constanda and A Kirsch (Basel: Birkhäuser) p 629-641
[15] Vasilyev V B 2014 Math. Bohem. 139 333-340
[16] Vasilyev V B 2017 New Trends in Analysis and Interdisciplinary Applications Selected Contributions of the 10th ISAAC Congress, Macau, 2015 ed P Dang, M Ku, T Qian and L Rodino (Basel: Birkhäuser) p 337-344
[17] Vladimirov V S Methods of the Theory of Functions of Many Complex Variables (Mineola, NY: Dover Publications)

