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Abstract. In the paper, there are defined continuous-valued logical functions defined on [0, 1]
as natural reactions of swarm to several stimuli detected at one time step. In this model, the
logical duality represented by squares or cubes of opposition is realizable by own swarm patterns
based on lateral inhibition and lateral activation. Swarm reactions are considered not certain,
but with a probability of their intensity in respect to the distance to an appropriate biologically
active substance. At the same time, we can formalize cases when the swarm members are
partly inhibited and partly activated. In other words, we assume that they can be less or more
inhibited and less or more activated, etc. So, we can deal with a fuzzy mix of conjunction and
disjunction at one time.

1. Introduction
Swarm intelligence as a branch of computer science [2] is focused on analyzing the collective
behaviour of decentralized and self-organized multi-agent systems. There were developed many
algorithms based on formalizing different swarms: ant colonies, bee colonies, fish schooling, bird
flocking and horse herding, bacterial colonies with a kind of social behaviour, multinucleated
giant amoebae Physarum polycephalum [1, 5, 6], etc.

So, swarm reactions are considered intelligent. It allows us to construct some computing
devices from swarms such as organic memristors – organic devices with a memory. These devices
can solve a wide range of computation tasks, including optimisation on graphs, computational
geometry, decentralized robot control, logic and arithmetical computing, etc.

Hence, swarms can implement different logical and arithmetic functions through their typical
reactions to outer stimuli. All these functions are defined due to artificial conditions completely
controlled in the experiments. In this paper, I am going to consider basic swarm reactions as
logical functions realized in natural conditions, not artificial ones. So, each swarm reacts to outer
signals by means of decentralized reactions of its members and there are two kinds of reactions in
respect to two types of outer signals: attracting swarm members in relation to attractants (food,
pheromone) and repelling swarm members in relation to repellents (dangerous circumstances
such as predators). Each attractant can have a different concentration of pheromone or other
active substance. In this way, it attracts swarm members differently: stronger or weaker. At
the same time, each repellent can have a different concentration of dangerous substance, too.
Therefore, it repels swarm members differently also: stronger or weaker.

Thus, if we regard attractants as logical variables, they will have values from the interval
[0, 1]. Let p be a logical variable that denotes an attractant. Then its value m(p) is equal to 0 if
the signal from an appropriate attractant cannot be perceived by the swarm members (e.g. the
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attractant is located so far from the swarm). The value m(p) is equal to 1 if the attractant is
occupied by the swarm members. In case the attractant just attracts the swarm, the value m(p)
belongs to (0, 1). In the meanwhile, if the attractant q attracts stronger then the attractant p,
then we have m(q) > m(p).

Repellents can be examined as negations of logical variables. Let ¬p be a logical formula
that denotes a repellent. Then its value m(¬p) is equal to 0 if the signal from an appropriate
repellent cannot be perceived by the swarm members (e.g. the repellent is located so far from the
swarm). The value m(¬p) is equal to 1 if the repellent is placed at the closest distance from the
swarm members. In case the repellent just repels the swarm, the value m(p) belongs to (0, 1).
Thereby, if the repellent q repels stronger then the repellent p, then we have m(q) > m(p).

The conjunction p ∧ q of two biologically active substances p and q means a simultaneous
action of both substances (attracting and/or repelling) in a different degree of their activity
belonging to [0, 1] depending on a concentration of active ingredients. The disjunction p ∨ q of
two biologically active substances p and q means that p or q act (attract and/or repel) in respect
to their concentration expressed numerically as a number from [0, 1]. Hence, a localization of
different biologically active substances (attractants and repellents) can be represented as a logical
function defined on these active substances with their different activity.

In section 2, different logical functions are defined on swarm patterns in the way mentioned
above. In section 3, there are considered some natural limits of complex logical functions
because of the following two main effects in networking reactions: lateral inhibition and lateral
activation [5]. All the constructions of the paper are presented for the first time. Some real-
time experiments were carried out within the project Physarum Chip: Growing Computers from
Slime Mould funded by the Seventh Framework Programme (FP7) by the European Commission
within CORDIS and the FET Proactive scheme (Grant agreement ID: 316366). In the paper
there are presented just theoretical results.

2. Logical functions on swarm patterns
Let us take F, a standard set of propositional formulas containing propositional variables p1, . . . ,
pk and their propositional superpositions by using negation ¬, conjunction ∧, and disjunction
∨. A two-valued logical meaning m is defined as a mapping from the set of propositional
formulas F to {0, 1}, where 1 means ‘truth’ and 0 means ‘falsehood’. A infinite-valued logical
meaning m′ is defined as a mapping from the set of propositional formulas F to [0, 1] ⊂ R,
where numbers from the interval (0, 1] mean a degree of ‘truth’ up to the highest degree 1,
0 means ‘falsehood’. An n-place two-valued (infinite-valued) logical function f is defined as
a mapping from Fn to F such that m(f(φ1, . . . , φn)) = f(m(φ1), . . . ,m(φn)) (respectively,
m′(f(φ1, . . . , φn)) = f(m′(φ1), . . . ,m

′(φn))). From this definition it follows that ¬ is an unary
logical function and ∨, ∧ are binary logical functions (two-valued or infinite-valued).

Let us take some unary predicates P1, . . . , Pk verified on the domain of D and let us take
some variables x, y, . . . that are interpreted as members of D. Then we can extend F to FP by
adding (i) atomic formulas P1(x), . . . , Pk(x), (ii) their propositional superpositions constructed
by using negation ¬, conjunction ∧, and disjunction ∨; (iii) quantified formulas ∀xφ (to read ‘φ
for all x’) and ∃xφ (to read ‘φ for some x’), where φ is an atomic formula P (x) or a propositional
superpositions of atomic formulas P1(x), . . . , Pl(x).

Now, let us take two unary modal operators: � and ⋄, defined on formulas φ from FP . Let us
introduce the so-called modal formulas: �φ (to read: ‘it is necessary that φ’) and ⋄φ (to read:
‘it is possible that φ’). The set FP is extended again to F� by adding modal formulas. Assume
that X is a set of indices and there is a distinguished index a. Let R be a binary relation on the
indices. The distinguished index a is to represent an actual time. The relation R is to be said a
possibility since a. Let us take x from X such that aRx. Then this aRx shows us a possibility
since a at an index x.
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Thus, finally, an n-place two-valued (infinite-valued) logical function f is defined as a
mapping from Fn

� to F� such that m(f(φ1, . . . , φn)) = f(m(φ1), . . . ,m(φn)) (respectively,
m′(f(φ1, . . . , φn)) = f(m′(φ1), . . . ,m

′(φn))). So, ∀ and ∃ as well as � and ⋄ are unary logical
functions.

Let us introduce a semantics for F� defined on the swarm patterns for infinite-valued logical
functions. As we know, each swarm may be regarded as a multi-agent system consisting of n
actors (members of this swarm) A1, . . . , An. All the behaviors of the actors are influenced
by biologically active substances of two types: (i) repellents (such as hazardous substances or
predators), which are always avoided by the actors, and (ii) attractants (such as food or sexual
pheromone) which attract them. Each member of swarm can detect an attractant (repellent)
in a radius not longer than r. In other words, there is a minimal r such that at each distance
d ∈ [0, r) an active substance is detected by the swarm. Hence, assume that this attractant
(repellent) X is placed at the distance d ∈ [0, r) from an agent A. Let us define a probability
PA

t (X) = 1− d
r for the agent A at the time step t in detecting the attractant (repellent) X. It

means that this X attracts (repels) the swarm member A with a probability 1 − d
r . Suppose

that d = 0. Then PA
t (X) = 1. It is just a case when the attractant (repellent) X is occupied by

the agent A. Now, suppose that d = r. Then PA
t (X) = 0. Beginning from the distance r the

swarm member cannot detect an attractant (repellent). Assume that for all d > r, we obtain
PA

t (X) = 0, too:

PA
t (X) =

{
1− d

r , if d ∈ [0, r);
0, if d ∈ [r,+∞).

This property allows us to interpret propositional variables p ∈ F� as biological stimuli:

true variable: mA
X,t(p) = PA

t (X) ∈ (0, 1] for the agent A and a biologically active thing X

at the time step t if and only if A is attracted (repelled) by X at t with a probability
PA

t (X) > 0;

false variable: mA
X,t(p) = 0 for the agent A and a biologically active thing X at the time step

t if and only if A is not attracted (repelled) by X at t, i.e. PA
t (X) = 0.

Let us interpret the negation ¬p of propositional variables p ∈ F� as a biological stimulus.
Let X be an appropriate attractant (repellent) realizing p which attracts (repels) A at t with
a probability PA

t (X) ∈ [0, 1]. Then ¬p means that PA
t (¬X) = 1 − PA

t (X). For instance, if
PA

t (X) = 0, then it means that X is not detected and then PA
t (¬X) = 1. If PA

t (X) = 1, then it
means that X is occupied by A and then PA

t (¬X) = 0. In cases PA
t (X) ∈ (0, 1), the situation is

more advanced and means that X is not occupied with a degree 1−PA
t (X). Thus, our definition

of negation is as follows:

true negation: mA
X,t(¬p) = PA

t (X) ∈ [0, 1) for the agent A and biologically active element X

at the time step t if and only if X is not occupied by A at t, in other words PA
t (X) < 1;

false negation: mA
X,t(¬p) = 0 for the agent A and biologically active element X at the time

step t if and only if (mA
X,t(p)) = 1, i.e. X maximally actively works on A at t.

Now, let us assume the existence of k agents A1, . . . , Ak with the radii of sensitivity rA1 ,
. . . , rAk

, respectively. So, rA1 , . . . , rAk
are minimal distance where an active ingredient cannot

be detected by the members A1, . . . , Ak. Suppose that there are two different active things X1

and X2 located at the distance d such that d < rA1 , . . . , d < rAk
. There are two possibilities,

provided that X1 and X2 are attractants: (i) both X1 and X2 are occupied by the members
A1, . . . , Ak (for instance, X1 is occupied by A1 and X2 is occupied by A2, or X1 is occupied
by A2 and X2 is occupied by A1, etc.); (ii) X1 or X2 are occupied by the members A1, . . . ,
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Ak (for instance, X1 is occupied by A1 and A2 simultaneously, or X2 is occupied by A1 and A2

simultaneously, etc.). Also, there are two possibilities, provided that X1 and X2 are repellents:
(iii) both X1 and X2 are avoided by the members A1, . . . , Ak (e.g. X1 is avoided by A1 and
X2 is avoided by A2, or X1 is avoided by A2 and X2 is avoided by A1, etc.); (iv) X1 or X2 are
avoided by the members A1, . . . , Ak (e.g. X1 is avoided by A1 and A2 simultaneously, or X2

is avoided by A1 and A2 simultaneously, etc.). In the third situation that one of X1 and X2 is
a repellent and another active element is an attractant, we face the following possibilities: (v)
both X1 and X2 affect the members A1, . . . , Ak; (iv) X1 or X2 affect the members A1, . . . , Ak.

Thus, we can interpret the conjunction p∧q of propositional variables p, q ∈ F� as a biological
stimulus, too:

true conjunction: mA1,...,Ak
X1,X2,t

(p∧q) = PA1,...,Ak
t (X1∧X2) = min(PA1,...,Ak

t (X1),P
A1,...,Ak
t (X2)) >

0 for the agents A1, . . . , Ak and biologically active elements X1 and X2 at the time
step t if and only if both X1 and X2 attract (repel) A1, . . . , Ak at t with a probability

PA1,...,Ak
t (X1) > 0 and PA1,...,Ak

t (X2) > 0;

false conjunction: mA1,...,Ak
X1,X2,t

(p∧q) = PA1,...,Ak
t (X1∧X2) = min(PA1,...,Ak

t (X1),P
A1,...,Ak
t (X2)) =

0 for the agents A1, . . . , Ak and biologically active elements X1 and X2 at the time
step t if and only if X1 or X2 do not affect A1, . . . , Ak at t, i.e. PA1,...,Ak

t (X1) = 0 or

PA1,...,Ak
t (X2) = 0.

The same concerns the disjunction p ∨ q of propositional variables p, q ∈ F�:

true disjunction: mA1,...,Ak
X1,X2,t

(p∨q) = PA1,...,Ak
t (X1∨X2) = max(PA1,...,Ak

t (X1),P
A1,...,Ak
t (X2)) >

0 for the agents A1, . . . , Ak and biologically active elements X1 and X2 at the time step t
if and only if X1 or X2 attract (repel) A1, . . . , Ak at t with a probability PA1,...,Ak

t (X1) > 0

or PA1,...,Ak
t (X2) > 0;

false disjunction: mA1,...,Ak
X1,X2,t

(p∨q) = PA1,...,Ak
t (X1∨X2) = max(PA1,...,Ak

t (X1),P
A1,...,Ak
t (X2)) =

0 for the agents A1, . . . , Ak and biologically active elements X1 and X2 at the time step
t if and only if X1 and X2 do not affect A1, . . . , Ak at t, i.e. PA1,...,Ak

t (X1) = 0 and

PA1,...,Ak
t (X2) = 0.

Let l be a maximal number of different active things which can be detected at the time t by
all the members A1, . . . , Ak. Then we can generalize our new semantics as follows:

true l-place logical function: mA1,...,Ak
X1,...,Xl,t

(f(p1, . . . , pl) = PA1,...,Ak
t (f(X1, . . . , Xl)) =

f(PA1,...,Ak
t (X1), . . . , P

A1,...,Ak
t (Xl)) > 0 for the agents A1, . . . , Ak and biologically active

elements X1, . . . , Xl at the time step t if and only if f(PA1,...,Ak
t (X1), . . . ,P

A1,...,Ak
t (Xl)) > 0;

false l-place logical function: mA1,...,Ak
X1,...,Xl,t

(f(p1, . . . , pl) = PA1,...,Ak
t (f(X1, . . . , Xl)) =

f(PA1,...,Ak
t (X1), . . . , P

A1,...,Ak
t (Xl)) = 0 for the agents A1, . . . , Ak and biologically active

elements X1, . . . , Xl at the time step t if and only if f(PA1,...,Ak
t (X1), . . . ,P

A1,...,Ak
t (Xl)) = 0.

Hence, in our definition of realizing l-place logical function on the swarm behavior, we assume
a bijection between the set of propositional variables and the set of active elements affecting at
the time step t.

Let us show that mA1,...,Ak
X,t (p ∨ ¬p) = 1 if mA1,...,Ak

X,t (p) = 0 or mA1,...,Ak
X,t (p) = 1.

Indeed, mA1,...,Ak
X,t (p ∨ ¬p) = (mA1,...,Ak

X,t (p) ∨ ¬mA1,...,Ak
X,t (p)) = (PA1,...,Ak

X,t (p) ∨ ¬PA1,...,Ak
X,t (p)) =

max(PA1,...,Ak
X,t (p), 1−PA1,...,Ak

X,t (p)) = 1 if PA1,...,Ak
X,t (p) = 0 or PA1,...,Ak

X,t (p) = 1.
Also, we can behaviorally interpret unary predicates P1, . . . , Pk verified on the domain of

D as well as variables x, y, . . . understood as members of D. Let Dt mean all the biologically
active elements reachable for A1, . . . , Ak at the time t. Then D =

∪n
t=0Dt, where n is a time

step denoting one life cycle of a swarm.
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True atomic formula:
mA1,...,Ak

D,t (P (x)) = PA1,...,Ak
D,t (P (x)) > 0

for A1, . . . , Ak and biologically active elements of D at the time step t if and only if
P (mA1,...,Ak

D,t (x)) ⊆ Dt with a probability PA1,...,Ak
D,t (P (x)) > 0, where mA1,...,Ak

D,t (x) means

an element from Dt. For instance, let P mean ‘neighbors for the attractant X (i.e. elements

reachable from X at one step of agents A1, . . . , Ak)’. Then mA1,...,Ak
D,t (P (x)) > 0 if and

only if there are neighbors for X in D at t and these neighbors affect with a probability
PA1,...,Ak

D,t (P (x)) > 0.

False atomic formula:
mA1,...,Ak

D,t (P (x)) = PA1,...,Ak
D,t (P (x)) = 0

for A1, . . . , Ak and biologically active elements of D at the time step t if and only if
P (mA1,...,Ak

D,t (x)) * Dt, where m
A1,...,Ak
D,t (x) means an element from Dt.

Let f(φ1, . . . , φi) be a logical function defined on atomic formulas or their propositional

superpositions φ1, . . . , φi from FP , then mA1,...,Ak
D,t (f(φ1, . . . , φi)) > 0 if and only if

f(mA1,...,Ak
D,t (φ1), . . . ,m

A1,...,Ak
D,t (φi)) > 0, otherwise f(mA1,...,Ak

D,t (φ1), . . . , m
A1,...,Ak
D,t (φi)) = 0.

Suppose, ∀xφ is a quantified formula of FP , then m
A1,...,Ak
D,t (∀xφ) > 0 if and only if for every

element a in the domain of Dt, m
A1,...,Ak
D,t (x) = a and we have mA1,...,Ak

D,t (φ) > 0, otherwise

mA1,...,Ak
D,t (∀xP (x)) = 0. Let ∃xφ be a quantified formula of FP , then mA1,...,Ak

D,t (∃xφ) > 0 if

and only if there is an element a in the domain of Dt, such that mA1,...,Ak
D,t (x) = a and we have

mA1,...,Ak
D,t (φ) > 0, otherwise mA1,...,Ak

D,t (∃xP (x)) = 0.
Modal formulas of F� can be behaviorally interpreted, too. Let the index set X consist of

indices denoting different time steps within one life cycle of a swarm.

• for a formula φ ∈ F� without modal operators, mA1,...,Ak
�,t (φ) > 0 at t ∈ X if and only if

mA1,...,Ak
D,t (φ) > 0 or mA1,...,Ak

X1,...,Xl,t
(φ) > 0;

• for a formula φ ∈ F� without modal operators, mA1,...,Ak
�,t (φ) = 0 at t ∈ X if and only if

mA1,...,Ak
D,t (φ) = 0 or mA1,...,Ak

X1,...,Xl,t
(φ) = 0;

• let �φ be a modal formula of F�, then m
A1,...,Ak
�,t (�φ) > 0 at x ∈ X if and only if for all

y ∈ X with xRy, mA1,...,Ak
�,t (φ) > 0 at y, otherwise mA1,...,Ak

�,t (�φ) = 0 at x;

• let ⋄φ be a modal formula of F�, then m
A1,...,Ak
�,t (⋄φ) > 0 at x ∈ X if and only if for some

y ∈ X with xRy, mA1,...,Ak
�,t (φ) > 0 at y, otherwise mA1,...,Ak

�,t (⋄φ) = 0 at x;

• let ∀xφ be a quantified formula of F�, then m
A1,...,Ak
�,t (∀xφ) > 0 at t ∈ X if and only if for

every element a in the domain of Dt, m
A1,...,Ak
D,t (x) = a and we have mA1,...,Ak

�,t (φ) > 0 at t,

otherwise mA1,...,Ak
�,t (∀xP (x)) = 0 at t;

• let ∃xφ be a quantified formula of F�, then mA1,...,Ak
�,t (∃xφ) > 0 at t ∈ X if and only

if there is an element a in the domain of Dt, such that mA1,...,Ak
D,t (x) = a and we have

mA1,...,Ak
�,t (φ) > 0 at t, otherwise mA1,...,Ak

�,t (∃xP (x)) = 0 at t.

3. Logical duality on swarm patterns
Suppose that f is an n-place two-valued logical function. Another n-place two-valued logical
function f ′ is said to be dual (or logically dual) to f if and only if

f ′(φ1, . . . , φn) ≡ ¬f(¬φ1, . . . ,¬φn),
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where ≡ is a sign for the equivalence relation: f ′(φ1, . . . , φn) is true if and only if
¬f(¬φ1, . . . ,¬φn) is true and f ′(φ1, . . . , φn) is false if and only if ¬f(¬φ1, . . . ,¬φn) is false.

According to this definition, if f ′ is dual to f , then f is dual to f ′. So, the duality is always
mutual.

Let us notice that conjunction and disjunction are dual to each other:

(φ ∧ ψ) ≡ ¬(¬φ ∨ ¬ψ);

(φ ∨ ψ) ≡ ¬(¬φ ∧ ¬ψ).

The universal quantifier ∀ and the existential quantifier ∃ are dual to each other, too:

∀xφ ≡ ¬∃x¬φ;

∃xφ ≡ ¬∀x¬φ.

The necessity modal operator � and the possibility modal operator ⋄ are another example of
logical duality:

�φ ≡ ¬ ⋄ ¬φ;

⋄φ ≡ ¬�¬φ.

The logical duality is a significant concept of logic, because it allows us to define a lattice,
i.e. it can be used for ordering logical functions. Indeed, if f and f ′ are dual to each other, then
either (f ⇒ f ′) ≡ 1 or (f ′ ⇒ f) ≡ 1, where ⇒ is a sign for implication (a two-place two-valued
logical function “if . . . , then . . . ’) such that

(φ⇒ ψ) ≡ (¬φ ∨ ψ).

It means that either m(f) ≤ m(f ′) or m(f ′) ≤ m(f). So, we have the following true
implications:

(φ ∧ ψ) ⇒ (φ ∨ ψ);

∀xφ⇒ ∃xφ.

Let us check the first claim. Assume that 1 ≡ (¬φ ∨ φ). Then ((φ ∧ ψ) ⇒ (φ ∨ ψ)) ≡
(¬(φ ∧ ψ) ∨ (φ ∨ ψ)) ≡ (¬φ ∨ ¬ψ ∨ φ ∨ ψ) ≡ ((¬φ ∨ φ) ∨ (¬ψ ∨ ψ)) ≡ 1 ∨ 1 ≡ 1. In the modal
logic D, the true implication is as follows:

�φ⇒ ⋄φ.

On the basis of logical duality, we can define contrary, subcontrary, subaltern, and
contradictory logical functions:

contrary: two functions h and h′ are contrary if and only if (h ∧ h′) ≡ 0, but not always
(h ∨ h′) ≡ 1;

subcontrary: two functions h and h′ are subcontrary if and only if (h∨h′) ≡ 1, but not always
(h ∧ h′) ≡ 0;

subaltern: a function h is subaltern to h′ if and only if (h′ ⇒ h) ≡ 1;

contradictory: two functions h and h′ are contradictory if and only if (h ∨ h′) ≡ 1 and
(h ∧ h′) ≡ 0.

Let us assume that f(φ1, . . . , φn) and f ′(φ1, . . . , φn) are dual and (f(φ1, . . . , φn) ⇒
f ′(φ1, . . . , φn)) ≡ 1, see figure 1:

• f ′(φ1, . . . , φn) is subaltern to f(φ1, . . . , φn);
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Figure 1. The square of opposition for the dual logical functions f(φ1, . . . , φn) and
f ′(φ1, . . . , φn).

Figure 2. The square of opposition for the expressions ‘relax from p’ and ‘stress from ¬p’.

• f(φ1, . . . , φn) and f(¬φ1, . . . ,¬φn) are contrary ;

• f ′(φ1, . . . , φn) and f
′(¬φ1, . . . ,¬φn) are subcontrary ;

• f(φ1, . . . , φn) and f ′(¬φ1, . . . ,¬φn) (as well as f ′(φ1, . . . , φn) and f(¬φ1, . . . , ¬φn)) are
contradictory.

The logical duality is observed in swarm patterns. So, the swarm members can move either
under a stress or with a sense of safety. For example, if some swarm individuals face two
attractants, they experience rather a safety and if they face two repellents, they experience rather
a stress. Also, a stress can be caused by a very high concentration of attractive pheromone. In
any case, there is a natural duality in the swarm reactions: these reactions are carried out either
under stress or with sense of safety [5].

Let us define two unary predicates on propositional variables p ∈ F�: ‘stress from p’ and
‘safety from p’. The variables p are interpreted as biologically active elements (attractants or
repellents). Standardly, an attractant with a usual concentration of pheromone causes safety and
a repellent with a usual concentration of dangerous matter causes stress. Let ¬p be interpreted
as a complement to the active element of p in the class of all active elements. Thus, we can
construct a square of opposition, see figure 2.

In this square of opposition, the predicates ‘stress from p’ and ‘safety from ¬p’ are considered
dual: if ‘stress from p’ holds true, then ‘safety from ¬p’ holds true. However, it is possible
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Figure 3. The square of opposition for the unary operators INHA1,...,Ak
and ACTA1,...,Ak

.

to claim that the feeling of stress and the feeling of safety are two psychological phenomena
which concern individuals of birds and mammals and they do not concern insects or unicellular
organisms surely. But how to explain the same swarm reactions of social insects and social
bacteria? They also prefer either conjunction or disjunction under different conditions. The
point is that ‘stress from p’ and ‘safety from p’ can be realized even by an individual such as
an insect or bacterium without any mechanism of awareness. In each networking, including
networks of actin filaments in one cell, there are two basic reactions to outer stimuli: lateral
activation (a reaction under safety) and lateral inhibition (a reaction under stress). Both types
of reactions can be realized without awareness and explained rather chemically. For instance,
these types of reactions are observed in plasmodia of Physarum polycephalum – an amoeboid
multinucleated organism. Evidently that this organism does not have feelings at all.

The lateral activation is a reaction of particles within one network to outer stimuli, according
to which different particles are not concentrated on the same stimuli. As a result, we observe
a decreasing of the intensity of the outer signals and the contrast of the signals is made less
visible. The lateral inhibition is a reaction of particles within one network to outer stimuli,
according to which different particles are concentrated on the same stimuli. This has led us to
an increasing of the intensity of the outer signals and the contrast of the signals is made more
visible. The plasmodia of Physarum polycephalum follow the lateral activation if they detect
normal attractants and they follow the lateral inhibition if they face standard repellents [5].

Thus, let us define two unary operators: (i) INHA1,...,Ak
(p) ::= ‘the swarm individuals

A1, . . . , Ak are laterally inhibited by an outer signal p’; mA1,...,Ak
D,t (INHA1,...,Ak

(p)) >

0 if and only if mA1,...,Ak
D,t (¬p) > 0, otherwise mA1,...,Ak

D,t (INHA1,...,Ak
(p)) = 0; (ii)

ACTA1,...,Ak
(p) ::= ‘the swarm individuals A1, . . . , Ak are laterally activated by an outer

signal p’; mA1,...,Ak
D,t (ACTA1,...,Ak

(p)) > 0 if and only if mA1,...,Ak
D,t (p) > 0, otherwise

mA1,...,Ak
D,t (ACTA1,...,Ak

(p)) = 0 . There is a logical duality between INHA1,...,Ak
(p) and

ACTA1,...,Ak
(¬p):

(INHA1,...,Ak
(p) ⇒ ACTA1,...,Ak

(¬p)) ≡ 1.

As a consequence, we can introduce a logical square of opposition for INHA1,...,Ak
(p) and

ACTA1,...,Ak
(¬p), please see figure 3. It is the same as in figure 2, but it is defined more correctly

from the point of view of cognitive science, because ‘stress’ and ‘safety’ are not precise terms.
Now, we can define binary operators: (i) INHA1,...,Ak

(p, q) ::= ‘the swarm individuals

A1, . . . , Ak are laterally inhibited by two outer signals p and q’; mA1,...,Ak
D,t (INHA1,...,Ak

(p, q)) >
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Figure 4. The square of opposition for the binary operators INHA1,...,Ak
and ACTA1,...,Ak

.

0 if and only if mA1,...,Ak
D,t (p ∧ q) > 0, otherwise mA1,...,Ak

D,t (INHA1,...,Ak
(p, q)) = 0; (i)

ACTA1,...,Ak
(p, q) ::= ‘the swarm individuals A1, . . . , Ak are laterally activated by two outer

signals p and q’; mA1,...,Ak
D,t (ACTA1,...,Ak

(p, q)) > 0 if and only if mA1,...,Ak
D,t ((¬(p ∧ q))) =

mA1,...,Ak
D,t ((¬p ∨ ¬q) > 0, otherwise mA1,...,Ak

D,t (ACTA1,...,Ak
(p, q)) = 0. From these definitions

it follows that

(INHA1,...,Ak
(p, q) ⇒ ACTA1,...,Ak

(¬p,¬q)) ≡ 1.

Hence, we obtain a square of opposition for INHA1,...,Ak
(p, q) and ACTA1,...,Ak

(¬p, ¬q), see
figure 4.

Also, we can obtain the cube of opposition for the binary operators INHA1,...,Ak
and

ACTA1,...,Ak
, see figure 5.

To sum up, we see that swarms realize a kind of logical duality in their reactions towards outer
stimuli p and q, since either they behave under lateral activation and realize the false conjunction
of p and q or they can behave under lateral inhibition and realize the true conjunction of p and
q, see figure 4–5. For more details about the logical duality, please see [3, 4].

From the experiments [5], we know that lateral activation and lateral inhibition in swarm
reactions have a continuous smooth transition between them: to be more laterally activated and
less laterally inhibited or to be less laterally activated and more laterally inhibited. We can
express this property as follows. Let X1, . . . , Xl be active substances. Let us consider

QA1,...,Ak
t (X1, . . . , Xl) = (max(PA1,...,Ak

t (X1), . . . ,

PA1,...,Ak
t (Xl))−min(PA1,...,Ak

t (X1), . . . ,

PA1,...,Ak
t (Xl)))/2.

Then
ACTA1,...,Ak

(X1, . . . , Xl) ∈ [max(PA1,...,Ak
t (X1), . . . ,

PA1,...,Ak
t (Xl))−QA1,...,Ak

t (X1, . . . , Xl),

max(PA1,...,Ak
t (X1), . . . ,P

A1,...,Ak
t (Xl))].

As a consequence,

INHA1,...,Ak
(X1, . . . , Xl) = 1−ACTA1,...,Ak

(X1, . . . , Xl).

Thus, we can simulate different degrees of lateral activation and lateral inhibition in the
swarm reactions.
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Figure 5. The cube of generalized Post duality for the binary operators INHA1,...,Ak
and

ACTA1,...,Ak
.

4. Conclusion and Discussion
We have just considered an abstract model of swarms, where we have defined logical functions
of F� as natural reactions of swarm members to several stimuli detected at one time step. In
this model, the logical duality represented by squares or cubes of opposition is realizable by
own swarm patterns based on lateral inhibition and lateral activation. Swarm reactions are
considered not certain, but with a probability of their intensity in respect to the distance to
an appropriate biologically active substance. At the same time, we can formalize cases when
the swarm members are partly inhibited and partly activated. In other words, we assume that
they can be less or more inhibited and less or more activated, etc. So, we can deal with a fuzzy
mix of conjunction and disjunction at one time. And this mix of effects from X1, . . . , Xl can
have continuous modifications. For the disjunction of X1, . . . , Xl, the values can be defined as
running over the interval from max(PA1,...,Ak

t (X1), . . . ,P
A1,...,Ak
t (Xl)) − QA1,...,Ak

t (X1, . . . , Xl)

to max(PA1,...,Ak
t (X1), . . . , PA1,...,Ak

t (Xl)). For the conjunction of X1, . . . , Xl, the values

can be defined as running over the interval from min(PA1,...,Ak
t (X1), . . . ,P

A1,...,Ak
t (Xl)) to

min(PA1,...,Ak
t (X1), . . . ,P

A1,...,Ak
t (Xl)) +QA1,...,Ak

t (X1, . . . , Xl).
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