Synopsis
We report non-adiabatic dynamics of the Li+LiNa→Li2+Na chemical reaction at cold and ultracold temperatures employing accurate ab initio electronic potential energy surfaces in a quantum dynamics formulation employing a diabatic representation. Results are compared against those from a single adiabatic ground state potential energy surface and a universal model based on the long-range interaction potential. We discuss signatures of non-universal behavior in the total rate coefficients as well as strong non-adiabatic effects in the state-to-state rotationally resolved rate coefficients.
Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.