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Abstract. Controlling a differential drive robot balancing system is a challenging task since it is 

highly unstable, non-linear and under-actuated system. This paper proposes a PID controller 

algorithm to balance a differential drive robot at upright position. The system model derived 

using Lagrangian method is discussed. The resulting mathematical model of the proposed 

closed-loop system was simulated. To verify the system performances, the real time experiments 

have been conducted. An Arduino Uno and an MPU6050 were used as the main controller and 

the main sensor, respectively. The PID parameters were manually tuned until the desired 

performance was achieved. From the simulation and the real time experiment results, the 

proposed method has demonstrated its capability to stabilize robot at upright position. 

1.  Introduction 

The world of robots has helped a lot of human life in various fields [1]. Very rapid development in Robot 

technology so that many tasks ranging from simple things to very complicated things can be done by 

robots so that the results of the process are more efficient, faster, more precise and economical [2]. The 

existence of robots does not only fill the work of human work in daily life, robots are also applied in 

industrial fields that can produce increased productivity and cut labor costs [3]. This resulted in a 

significant increase in profits for current industry players [4]. Two wheeled self-balancing mobile robot 

is a special type of wheeled mobile robot [5]. Signal processing and control techniques are the main 

factors in which robot performance and stability rely on [6]. The main focus of this research project is 

to develop a two-wheeled equilibrium robot that will be controlled by a PID-controller-based 

microcontroller to improve its durability in terms of performance stability [7]. Two-wheeled equilibrium 

robot is a type of mobile robot [8]. To achieve equilibrium requires signal processing and control 

techniques and is a major factor in robot performance and stability [9]. In recent years, many researchers 

conducted research on wheel equilibrium robots because they have characteristics in terms of non-

linearity, instability, having many variables, and strong coupling [10]. The control system commonly 

used by experts includes using the PID control system [11]. This control system consists of a 

Proportional, Integral and Derivative (PID) control system [12]. This control system is a controller to 

accelerate the stability of the system with the duration of time as quickly as possible with minimal 

oscillation [10]. Independent control systems and equilibrium are the main focus in designing systems 

with the aim of: (1) Achieving effective stability; (2) increasing response speed; (3) Responding to 

errors; and (4) Prevent excessive oscillation, fluctuations and robot vibrations. Very effective PID 
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control is used in closed control systems so that the output of the system can be evaluated whether it is 

in accordance with the set points we expect or not. In this study it was intended to design equilibrium 

two-wheeled robots. The control technique uses an Arduino microcontroller. While the input signal is 

controlled using an accelerometer sensor and gyroscope. The accelerometer is used to detect slope and 

the gyroscope is used to detect the angular velocity of the robot body. The scope of this research is 

focused on robot assembly and kinematic mathematical modeling including designing and running an 

Arduino-based PID Controller on Robots. This paper is organized as follows: Section 2 presents 

mathematical and simulation modeling. Section 3 PID controller. Section 4 presents result and 

discussion. Section 5 or the Final section is a conclusion. 

2.  Mathematical and simulation modelling 

The robot consists of main body and wheels. The free body diagram of the robot is presented in Figure 

1. 

 

Figure 1. Free-body diagram of the robot. 

To model the robot, the following assumptions are made: (1) The robot mechanical structure is rigid, 

(2) The mass (m) and the radius (r) of the robot wheels are the same, (3) The link length of each wheel 

to the centre of the robot mass is the same (𝑙𝑟 = 𝑙𝑙 = 𝑙/2), (4) Slip between the wheel and the ground 

surface is not considered, (5) Internal losses are neglected and (6) Inductance and frictions on the 

armature are neglected. The robot is considered to possess three degree freedom, consisting of yaw angel 

(𝑦), tilt angle (𝛼), and transitional motion (𝑥). The two Lagrangian equations are as follows: 

𝐿 = 𝑇 − 𝑉 
(1) 

𝜗

𝜗𝑡
(
𝜗𝐿

𝜗𝑞̇
) −

𝜗𝐿

𝜗𝑞
= 𝐹 (2) 

where 𝐿 is the Lagrangian, the kinetic energy is denoted by T, V denotes the potential energy, F is the 

forced function, 𝑞𝑥 is the generalized coordinate. This robot has been controlled by two inputs torques 

applied to the motors produced by voltage. 

𝑇 = 𝑇𝐶
𝐿 + 𝑇𝐶

𝑅 + 𝑇𝑊
𝐿 + 𝑇𝑊

𝑅  
(3) 

where 𝑇𝐶
𝐿 is the main body kinetic energy with respect to linear displacement, 𝑇𝐶

𝑅 is the main body 

kinetic energy with respect to angular displacement, 𝑇𝑊
𝐿  is the wheel kinetic energy due with respect to 

angular displacement, 𝑇𝑊
𝑅  wheel kinetic energy with respect to linear displacement. 

𝑇𝐶
𝑅 =

1

2
[𝐼𝑥𝛼̇

2 + 𝐼𝑦𝛾̇𝑦
2𝑠𝑖𝑛 𝛼2 + 𝐼𝑧𝛾

2 cos 𝛼2] (4) 

𝑇𝑊
𝑅 =

1

2
𝑀𝑟2[𝛼̇𝑟

2 + 𝛼̇𝑙
2] +

1

2
𝐼[𝛼̇𝑟

2 + 𝛼̇𝑙
2] (5) 

and, 
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𝛼𝑟 = 𝑥 + 𝐿𝛾, 𝛼1 = 𝑥 − 𝐿𝛾 (6) 

𝑇𝑊
𝑅 = (𝑀 +

𝐼

𝑟2
) (𝑥̇2 + 𝐿2𝛾2) (7) 

𝑉 = 𝑀𝑐𝑔𝑑 cos 𝛼 + 𝑀𝑐𝑔𝑟 (8) 

From Eq. (1), the Lagrangian equation is as follows: 

𝐿 = [𝑀 + 2𝑀𝑤 +
2𝐼

𝑟2] 𝑥̈ − [𝑀𝑑2 +
𝐼𝑥
𝑟2] 𝛼 ̈

+ [(𝑀 +
𝐼

𝑟2) 𝐿2 +
1

2
(𝐼𝑧 cos 𝛼2 + 𝐼𝑦 sin 𝛼2 + Mcd sin 𝛼2)] 𝛾2

+ Mcd cos α 𝑥̇𝛼̇ − [Mc 𝑔𝑑 cos 𝛼 + Mc 𝑔𝑟] 

(9) 

For x-coordinate, we have the following equations: 

(
𝜗𝐿

𝜗𝑥̇
) = [Mc + 2𝑀 +

2𝐼

𝑟2
] 𝑥̇ + Mc𝑑𝛼̇ cos 𝛼 (10) 

𝑑

𝑑𝑡
(
𝜗𝐿

𝜗𝑥̇
) = [𝑀𝑐 + 2𝑀 +

2𝐼

𝑟2
] 𝑥̈ − 𝑀𝑐𝑑𝛼̇2 sin 𝛼 + 𝑀𝑐𝑑𝛼̈ cos𝛼 (11) 

𝜗𝐿

𝜗𝑥
= 0 (12) 

[𝑀𝑐 + 2𝑀 +
2𝐼

𝑟2
] 𝑥̈ − 𝑀𝑐𝑑𝛼̇2 sin 𝛼 + 𝑀𝑐𝑑𝛼̈ cos𝛼 =

𝜏𝑟 + 𝜏𝑙

𝑟
 (13) 

𝑥̈ =
[
𝜏𝑟 + 𝜏𝑙

𝜏 − 𝑀𝑐𝑑𝛼̈ cos𝛼 + 𝑀𝑐𝑑𝛼̇2 sin 𝛼]

[𝑀𝑐 + 2𝑀 +
2𝐼
𝑟2]

 (14) 

For 𝛼-coordinate, we have the following equations: 

[𝑀𝑐𝑑
2 + 𝐼𝑥]𝛼̈ + 𝑀𝑐𝑑𝑥̈ cos 𝛼 − [𝑀𝑐𝑑

2 + 𝐼𝑦 − 𝐼𝑧]𝛾̇
2 − 𝑀𝑐𝑔𝑑 sin 𝛼 = −[𝜏𝑟 + 𝜏1] (15) 

From Eqs. 11 and 12, for the 𝛼̈can be the subject of the formula as : 

∝̈= [(𝑀𝑐 + 2𝑀 +
2𝑙

𝑟2) + 𝑀𝑐𝑑 cos 𝛼] [𝜏𝑟 + 𝜏1]/{[𝑀𝑐 + 2𝑀 +
2𝑙

𝑟2] [𝑀𝑐𝑑
2 + 𝐼𝑥]

− 𝑀𝑐
2𝑑2 cos 𝛼}

− 𝑀𝑐
2𝑑2𝛼2cos 𝛼 sin 𝛼 / {[𝑀𝑐 + 2𝑀 +

2𝑙

𝑟2] [𝑀𝑐𝑑
2 + 𝐼𝑥] − 𝑀𝑐

2𝑑2 cos 𝛼}

+ [𝑀𝑐𝑑
2 + 𝐼𝑦 − 𝐼𝑧]/{[𝑀𝑐 + 2𝑀 +

2𝑙

𝑟2] [𝑀𝑐𝑑
2 + 𝐼𝑥] − 𝑀𝑐

2𝑑2 cos 𝛼}

− 𝑀𝑐𝑔𝑑 sin 𝛼 (𝑀𝑐 + 2𝑀 +
2𝑙

𝑟2) /{[𝑀𝑐 + 2𝑀 +
2𝑙

𝑟2] [𝑀𝑐𝑑
2 + 𝐼𝑥] − 𝑀𝑐

2𝑑2 

(16) 

Simplify to get: 
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∝̈=
[𝑀𝑐𝑑

2 + 𝐼𝑦 − 𝐼𝑧][𝑀𝑐𝑟
2 + 2𝑀𝑟2 + 2𝐼]𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼

[𝑀𝑐𝑟𝑑 sin 𝛼]2 + ([𝑀𝑐 + 2𝑀]𝑟2 + 2𝐼)𝐼𝑥 + 2𝑀𝑐𝑑
2[𝑀𝑟2 + 𝐼]

. 𝛾̇2

−
𝑀𝑐

2𝑑2𝑟2𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼

[𝑀𝑐𝑟𝑑 sin 𝛼]2 + ([𝑀𝑐 + 2𝑀]𝑟2 + 2𝐼)𝐼𝑥 + 2𝑀𝑐𝑑
2[𝑀𝑟2 + 𝐼]

. 𝛼̇2

+
[𝑀𝑐𝑟

2 + 2𝑀𝑟2 + 2𝐼]𝑀𝑐𝑔𝑑 𝑠𝑖𝑛 𝛼]

[𝑀𝑐𝑟𝑑 sin 𝛼]2 + ([𝑀𝑐 + 2𝑀]𝑟2 + 2𝐼)𝐼𝑥 + 2𝑀𝑐𝑑
2[𝑀𝑟2 + 𝐼]

−
[𝑀𝑐𝑟

2 + 2𝑀𝑟2 + 2𝐼]𝑀𝑐𝑑𝑟 𝑐𝑜𝑠 𝛼]

[𝑀𝑐𝑟𝑑 sin 𝛼]2 + ([𝑀𝑐 + 2𝑀]𝑟2 + 2𝐼)𝐼𝑥 + 2𝑀𝑐𝑑
2[𝑀𝑟2 + 𝐼]

[𝜏𝑟 + 𝜏𝑙] 

(17) 

For x coordinate, the Lagrangian from Eq. (9) is as follows: 

𝛼̈ =
[
𝜏𝑟 + 𝜏𝑙

𝑟
+ 𝑀𝑐𝑑𝛼̇2 sin𝛼 − [𝑀𝑐 + 2𝑀 +

2𝐼
𝑟2]] 𝑥̈

𝑀𝑐𝑑 cos 𝛼
 (18) 

By substituting Eqs. (16) in (12), then it gives Eq. (19) as follow: 

[𝑀𝑐𝑑
2 + 𝐼𝑥]

[
𝜏𝑟 + 𝜏𝑙

𝑟
+ 𝑀𝑐𝑑𝛼̇2 sin 𝛼 − [𝑀𝑐 + 2𝑀 +

2𝐼
𝑟2]] 𝑥̈

𝑀𝑐𝑑 cos 𝛼
+ 𝑀𝑐𝑑 cos 𝛼 𝑥̈−[𝑀𝑐𝑑

2 + 𝐼𝑦

− 𝐼𝑧] cos  𝛼 sin  𝛾̇2 − 𝑀𝑐𝑔𝑑 sin  𝛼 = −(𝜏𝑟 + 𝜏𝑙) 

(19) 

Collecting terms with 𝑥̈, and making it the subject of the following formula: 

𝑥̈ =
𝑀𝑐𝑑 cos𝛼 [𝑀𝑐𝑑

2 + 𝐼𝑦 − 𝐼𝑧]𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼

[𝑀𝑐𝑑2 + 𝐼𝑥][𝑀𝑐𝑟2 + 2𝑀𝑟2 + 2𝐼] − [𝑀𝑐𝑑𝑟 cos 𝛼]2
. 𝛾̇2

−
𝑀𝑐

2𝑑2𝑔𝑟2𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼

[𝑀𝑐𝑑2 + 𝐼𝑥][𝑀𝑐𝑟2 + 2𝑀𝑟2 + 2𝐼] − [𝑀𝑐𝑑𝑟 cos 𝛼]2

+
𝑟2 [𝑀𝑐𝑑

2 + 𝐼𝑧][𝑀𝑐𝑑 𝑠𝑖𝑛 𝛼

[𝑀𝑐𝑑2 + 𝐼𝑥][𝑀𝑐𝑟2 + 2𝑀𝑟2 + 2𝐼] − [𝑀𝑐𝑑𝑟 cos 𝛼]2
𝛼̇2

+
𝑟2 [𝑀𝑐𝑑

2 + 𝐼𝑋 + 𝑀𝑐𝑑𝑟 𝑐𝑜𝑠 𝛼]

[𝑀𝑐𝑑2 + 𝐼𝑥][𝑀𝑐𝑟2 + 2𝑀𝑟2 + 2𝐼] − [𝑀𝑐𝑑𝑟 cos 𝛼]2
(𝜏𝑟 + 𝜏𝑙) 

(20) 

For γ-coordinate: The Lagrangian is given in Eq. (21) as follow: 

[2 (𝑀 +
𝐼

𝑟2
) 𝐿2 + 𝐼𝑦 𝑠𝑖𝑛 𝛼2 + 𝐼𝑧(𝑐𝑜𝑠 𝛼)2 + 𝑀𝑐𝑑

2 𝑠𝑖𝑛 𝛼] 𝛾̈ + 2 [[𝑀𝑐𝑑
2 + 𝐼𝑦 − 𝐼𝑧]𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼] 𝛾̇𝛼̇

=
𝐿

𝑟
(𝜏𝑟 + 𝜏𝑙) 

(21) 

Simplified further to make 𝑦̈ the subject of the following formula: 

𝛾̈ =
𝐿

2(𝑟 [𝑀 +
𝐼
𝑟2] 𝐿

2 + 𝐼𝑦 𝑠𝑖𝑛 𝛼2 + 𝐼𝑧(𝑐𝑜𝑠 𝛼)2 + 𝑀𝑐𝑑2 𝑠𝑖𝑛 𝛼
(𝜏𝑟 + 𝜏𝑙)  

− 2
2 [[𝑀𝑐𝑑

2 + 𝐼𝑦 − 𝐼𝑧]𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼] 𝛾̇𝛼̇

2(𝑟 [𝑀 +
𝐼
𝑟2] 𝐿

2 + 𝐼𝑦 𝑠𝑖𝑛 𝛼2 + 𝐼𝑧(𝑐𝑜𝑥 𝛼)2 + 𝑀𝑐𝑑2 𝑠𝑖𝑛 𝛼
 

(22) 

To linearize the non-linear model, it is assumed that the robot conditions are stabilized at the zero tilt 

angle. For α=0, which implies that sin α=α, cos α=1, 𝑦̇=0, and 𝛼̇=0 (24). Therefore, Eqs. (17), (20), and 

(22) become: 
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𝑥̈ =
𝑀𝑐

2𝑑2𝑔𝑟2

[𝑀𝑐𝑑2 + 𝐼𝑥][𝑀𝑐𝑟2 + 2𝑀𝑟2 + 2𝐼] − [𝑀𝑐𝑑𝑟]2
𝛼

+
𝑟 [𝑀𝑐𝑑

2 + 𝐼𝑋 + 𝑀𝑐𝑑𝑟]

[𝑀𝑐𝑑2 + 𝐼𝑥][𝑀𝑐𝑟2 + 2𝑀𝑟2 + 2𝐼] − [𝑀𝑐𝑑𝑟]2
(𝜏𝑟 + 𝜏𝑙) 

(23) 

𝛼̈ =
[𝑀𝑐𝑟

2 + 2𝑀𝑟22𝐼]𝑀𝑐𝑔𝑑

[(𝑀𝑐2𝑀)𝑟2  + 2𝐼]𝐼𝑥 + 2𝑀𝑐𝑑2(𝑀𝑟2 + 𝐼)
𝛼 −

[𝑀𝑐𝑟
2 + 2𝐼] + 𝑀𝑐𝑑𝑟

[(𝑀𝑐2𝑀)𝑟2 + 2𝐼]𝐼𝑥 + 2𝑀𝑐𝑑2(𝑀𝑟2 + 𝐼)
(𝜏𝑟 + 𝜏𝑙) (24) 

𝛾̈ =
𝐿

2(𝑟 [𝑀 +
𝐼
𝑟2] 𝐿2 + 𝐼𝑧

(𝜏𝑟 − 𝜏𝑙) 
(25) 

From Eqs. (23), (24), and (25) after substitution of robot parameters, Eqs. (26), (27), and (28) are 

obtained: 

𝑥̈ = 0.188𝛼 + 3.247(𝜏𝑟 + 𝜏𝑙) (26) 

𝛼̈ = 5.1𝛼 − 70(𝜏𝑟 + 𝜏𝑙) (27) 

𝛾̈ = 12.85(𝜏𝑟 + 𝜏𝑙) (28) 

Where 

[
 
 
 
 
 
𝑥̇
𝛼̇
𝛾̇
𝑥̈
𝛼̈
𝛾̈]
 
 
 
 
 

=

[
 
 
 
 
 
0 
0 
0 
0 
0 
0 

 

0 
0 
0 

0.188 
5.1 
0 

 0 
 0 
 0 
 0 
 0 
 0 

1 
0 
0 
0 
0 
0 

0
1
0
0
0
0

 0
 0
 1
 0
 0
 0]

 
 
 
 
 

 

[
 
 
 
 
 
𝑥
𝛼
𝛾
𝑥̇
𝛼̇
𝛾̇]
 
 
 
 
 

+ 

[
 
 
 
 
 

0
0
0

3.247
−70
12.85

0
0
0

3.247
−70

−12.85]
 
 
 
 
 

[
𝜏𝑟

𝜏𝑙
] (29) 

These Eqs. (24), (25), and (26) are transformed into state-space form based on the TWSB robot 

parameters in table 1. 

Table 1. Robot parameters. 

Parameter Symbol Quantity Unit 

Height of the chassis h 0.08 m 

Width of the chassis w 0.147 m 

Distance between wheels L 0.082 m 

Diameter of wheel d 0.083 m 

Mass of the chassis Mc 0.305 kg 

Mass of wheel M 0.051 kg 

Centre of mass C 0.04 m 

Acceleration due to gravity g 9.81 m/s 

Moment of inertia of chassis wrt. x-axis lx 0.07124E-3 kgm2 

Moment of inertia of chassis wrt. z-axis lz 0.725E-3 kgm2 

Moment of inertia of the wheel l 0.044E-3 kgm2 
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3.  PID controller 

This section presents PID controller methodology for robot development. The main controlling system 

of the mobile robot adopts PID control. The mobile robot uses sensor feedback data as PID control 

variable to calculate an output response to do correction and follow the predefined trajectory. The 

equation of PID controller is as follow [7]: 

𝑢(𝑡) = 𝑃 + 𝐼 + 𝐷 = 𝐾𝑝𝑒(𝑡) + 𝐾1 ∫𝑒 (𝑡)𝑑𝑡 + 𝐾𝑑

𝑑

𝑑𝑡
𝑒(𝑡) (30) 

where P is the proportional term in the discrete form is written as: 

𝑃 = 𝐾𝑝(𝑒𝑡 − 𝑒𝑡−1) 
(31) 

The I is an integrate term that accounts the total error history. 

𝐼 = 𝐾𝑖 ∑𝑒𝑡

∞

𝑡=0

 (32) 

The D stands for derivative and 

𝐷 = 𝐾𝑑 (
𝑒𝑡 − 𝑒𝑡−1

∆𝑡
), (33) 

where ∆𝑡 is the time sampling. 

where Kp, Ki and Kd denote the coefficients of the proportional, integral and derivative terms, 

respectively. 

4.  Result and discussion 

4.1.  Result 

When a robot does not use a PID controller (without a controller) only uses PWM, the robot is difficult 

to achieve balance. This can be seen in Figure 2 (a). When a robot using a PID controller with parameter 

values modified Kp = 5000, Ki = 1000 and Kd =500, the results can be seen in figures 2 (b). 

  
(a) (b) 

Figure 2. (a) Testing Robot without a controller, (b) Testing Robot with a controller. 

4.2.  Discussion 

Testing is done by changing the parameters of the Ki, Kp and Kd. From figures 2 can be seen that, when 

we use PID controller, the occurrence of oscillation even though it is small, the maximum steady state 

time is achieved. 
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5.  Conclusion 

After testing the data and analyzing the test, it can be concluded that the robot is successfully balanced 

with the most optimal performance by PID controller with the value is Kp: 5000 Ki: 1000 Kd: 500 The 

smaller the robot's deviation means the more stable the robot is. 
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