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Abstract. In their recent works, Ablowitz and Musslimani proposed a new type of integrable 

nonlinear equations – nonlocal analogues of the nonlinear Schrödinger equation, the modified 

Korteweg-de Vries equation, and other nonlinear differential equations. In subsequent works, 

numerous researchers constructed the simplest soliton and rational solutions of these equations. 

In this paper, we construct the simplest oscillating solutions of some of the integrable nonlocal 

nonlinear differential equations associated to the nonlinear Schrödinger equation. 

1. Introduction 

Research in this area began with the work of Ablowitz and Musslimani [2], where the authors modified 

the Lax pair for the nonlinear Schrödinger equation. The authors also found [2] a one-soliton solution 

of the nonlocal nonlinear Schrödinger equation by the inverse scattering problem. Then they continued 

their research on this topic in works [1, 3-5, 10], the intermediate results of which are published in [5], 

where 16 types of integrable nonlinear nonlocal differential equations are considered and analyzed. 

Research on this topic has attracted other researchers who have published at least 15 papers (see, for 

example, [6-8, 11-13, 16-20, 22, 23, 25]) on the subject in 2018 alone. In these works, as a rule, the 

authors construct soliton or rational solutions by methods of Darboux, Hirota transformation or self-

similar substitution. Also, a large number of papers on this subject have been published in previous 

years, since each of the authors applied his method to several nonlocal equations proposed in [5] (note 

that the paper [5] was previously published in 2016 as a preprint arXiv:1610.02594). There is no doubt 

that research on this subject will continue (see, for example, [9, 21, 24]). 

We remind that the equations of the AKNS hierarchy have the form  

ptk = –ikHk+1(p,q), qtk = –ikGk+1(p,q) or  ptk + ikHk+1(p,q) = 0, qtk + (–i)kHk+1(p,q) = 0, (1) 

where the functions Hk and Gk satisfy the following equations [14, 15] 

H1(p,q) = – px, G1(p,q) = –qx, (Fk(p,q))x = –pGk(p,q) – qHk(p,q), Hk+1(p,q) = 2pFk(p,q) + 

(Hk(p,q))x, Gk+1(p,q) = –2qFk(p,q) – (Gk(p,q))x. 

(2) 

 In particular, 

F1(p,q) = pq, H2(p,q) = 2p2q – pxx, 

G2(p,q) = –2q2p + qxx, F2(p,q) = pxq – pqx, 

H3(p,q) = 6pqpx – pxxx, G3(p,q) = 6pqqx – qxxx, 

F3(p,q) = pqxx + qpxx – pxqx – 3p2q2, 

(3) 



APITECH-2019

Journal of Physics: Conference Series 1399 (2019) 022020

IOP Publishing

doi:10.1088/1742-6596/1399/2/022020

2

 
 

H4(p,q) = –6p3q2 + 6qpx
2 + 4ppxqx + 8pqpxx + 2p2qxx – pxxxx, 

G4(p,q) = 6p2q3 – 6pqx
2 – 4qpxqx – 8pqqxx – 2q2pxx – qxxxx, 

F4(p,q) = – 6pq2px + 6p2qqx – qxpxx + pxqxx + qpxxx – pqxxx. 

It is easy to show that the functions Fk(p,q), Hk(p,q) and Gk(p,q) have the following properties  

Fk(q,p) = (–1)k–1Fk(p,q), Fk(–p, –q) = Fk(p,q), Gk+1(p,q) = (–1)kHk+1(q,p), Hk+1(–p,–q) = –Hk+1(p,q)  

And 

  1
, ( 1) ( , ) ,

k
F p q F p q
k kx x x x x x


 

  

 

 , ( 1) ( , ) ,
k

G p q G p q
k kx x x x x x

 
  

 

 , ( 1) ( , ) .
k

H p q H p q
k kx x x x x x

 
  

 
(4) 

 Since properties (3), (4) of equations (1) depend on the equation number, then reductions of 

equations of the AKNS hierarchy depend on the equation number as well. In particular, equations (1) 

except for general reductions 

q(x,tn) = σp*(x,tn), 

q(x,tn) = σp*(–x, –tn), 

where σ = ±1, the following reductions are allowed 

q(x,t2n–1) = σp(x, –t2n–1),                                                      (5a) 

q(x,t2n) = σp(x, t2n),                                                          (5b) 

q(x,t2n–1) = σp*(–x, t2n–1),                                                     (5c) 

q(x,t2n) = σp*(–x, –t2n).                                                      (5d) 

Naturally, the mixed equations [15] also allow reductions (5). 

Equations of the form 

2 1
( , ) 0

21

k
p i H p qt k kk


  


  

allow reductions (5a), (5c), and equations 

2
( , ) 0

2 11

k
p i H p qt k kk

  


  

allow reductions (5b), (5d). 

In this paper, we consider a class of relatively simple solutions of odd equations of the AKNS 

hierarchy. The solutions considered by us can be used to obtain more complex solutions using the 

Darboux transformation. 

The work was supported by RFBR (grant 19-01-00734). 

 

2. Modulated plane wave 

Recall that the algebraic-geometric solution of equations of the AKNS hierarchy for all values of tj 

satisfies the stationary mixed equation (see, for example, [15]) 

1
( , ) ( , ) ,

1

g
H p q C H p q C pg gk g kk


  



 

where g is the genus of the corresponding spectral curve, Cj are some constants. Using the method 

described in [15], one can find the equation of the spectral curve corresponding to a given particular 

stationary solution. 

Suggested g = 2n – 1 and 

p(x,0) = f(x) and q(x,0) = σf(x) 
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or  

p(x,0) = f(x) and q(x,0) = σf*(–x) 

from equation (6) we find the function f(x). Then adding the dependence on t by formulas 

2 1( , ) ( ) ,
2 1

ibt
np x t f x en



2 1( , ) ( )

2 1

ibt
nq x t f x en





                                 (6) 

or 

2 1( , ) ( ) ,
2 1

ibt
np x t f x en



2 1( , ) ( ) ,

2 1

ibt
nq x t f x en

  


                           (7) 

 we obtain the solution of the mixed equation of the AKNS hierarchy with a reduction (5a) or (5c). 

Further, applying the Darboux transformation to the found solutions, it is possible to obtain more 

complex solutions of the considered mixed equations of the AKNS hierarchy. Naturally, each of the 

reductions corresponds to its Darboux transformation. Therefore, from the same solution satisfying both 

reductions, it is possible to obtain further different solutions that will satisfy only one reduction. 

For example, making in the coupled nonlinear Schrödinger equation: 

2
2 0,

1
2

2 0,
1

ip p p qt xx

iq q q pt xx

  

   






                                                           (8) 

replacing (8), we obtain 

fxx = 2σf3 + bf.                                                             (9) 

Multiplying equation (9) by 2fx and integrating, we obtain 

(fx)2 = σf4 + bf2 + c,                                                    (10) 

where c is the integration constant. In general, equation (10) is the equation of an elliptic function. 

Depending on which elliptic Jacobi function is used, one of three solutions of equations (8) with 

reduction (5a) is obtained. If the solution of the equation (10) satisfies the condition 

f*(–x) ≡ f(x), 

then the functions (6) are the solution of equations (8) with reduction (5c). 

 

3. Elliptic solution I 

If f(x) = Asn[a(x – x0);k2] then 

,
ak

A 


b = –a2(k2+1), 

4 2
a k

c 


 

and 

2 2( 1)
2

sn[ ( ); ],
0

ia k t
ake

p a x x k

 

 


 

2 2( 1) 2
[ ( ); ].

0
sn

ia k t
q ake a x x k


                                                (11) 

Figure 1 shows the real part of the function p(x,t) (11) when σ = 1, a = 3, k = 0,8 
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Figure 1. The real part of the function 

p(x,t) (12) when σ = 1, a = 3, k = 0,8. 

For  a ∈ R, 0 < k < 1, x0 = 0, σ = –1 the condition is satisfied 

f*(–x) ≡ f(x). 

Therefore, for given parameter values, solution (11) satisfies equations (8) with reduction (5c). 

 

4. Elliptic solution II 

If f(x) = Acn[a(x – x0);k2] then 

,
iak

A 


b = a2(2k2 –1), 4 2 2
( 1)a k k

c





 

and 

2 2(2 1)
2

cn[ ( ); ],
0

ia k t
iake

p a x x k



 


 

2 2(2 1)
cn

2
[ ( ); ].

0
ia k t

q i ake a x x k
 

                                              (12) 

Figure 2 shows the real part of the function p(x,t) (12) when σ = 1, a = 3, k = 0,8 

 

 

 

 

 

 

 

 

Figure 2. The real part of the function p(x,t) 

(12) when σ = 1, a = 3, k = 0,8. 
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Solution (12) for a ∈ R, 0 < k < 1, x0 = 0, σ = −1 also satisfies equations (8) with reduction (5c), since 

in this case the condition is also satisfied 

f*(–x) ≡ f(x). 

 

5. Elliptic solution III 

If  f(x) = Adn[a(x – x0);k2] then 

,
ia

A 


 b = a2(2 – k2), 
4 2

(1 )a k
c






 

and 

2 2(2 )
2

dn[ ( ); ],
0

ia k t
iae

p a x x k



 


 

2
dn

2(2 ) 2
[ ( ); ].

0
ia k t

q i ae a x x k
 

                                              (13) 

Figure 3 shows the real part of the function p(x,t) (13) when σ = 1, a = 3, k = 0,8 

Solution (13) for a ∈ R, 0 < k < 1, x0 = 0, σ = −1 also satisfies equations (8) with reduction (5c), since 

in this case the condition is also satisfied 

f*(–x) ≡ f(x). 

 

 

 

 

 

 

 

 

 

 

Figure 3. The real part of the function 

p(x,t) (13) when σ = 1, a = 3, k = 0,8. 

6. Solutions in elementary functions 
However, there are two special cases where equation (11) has a solution in elementary functions. 

In the first of them the constant c = 0 and equation (11) is reduced to the simplest differential equation 

of the first order 

2
.

df
f b f

dx
    
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Dividing the variables and integrating, we have 

.
2

df
x

f b f

 

 

 

Calculating the integral standing on the right side and expressing the function f, we obtain, depending 

on the sign of b, three different cases. 

1. If b = 0, then 

1
( )

( )0

f x
x x


 

 

and 

1
,

( )0

p
x x


 

 
.

( )
0

q
x x




                                                        (14) 

2. If b = −a2 < 0, then 

( )
sin[ ( )]0

a
f x

a x x




 

and  

2

,
sin[ ( )]

0

ia t
ae

p
a x x






2

.
sin[ ( )]

0

ia t
ae

q
a x x




                                                  (15) 

3. If b = a2 > 0, then 

( )
cosh[ ( )]0

ia
f x

a x x




 

and 

2

,
cosh[ ( )]

0

ia t
iae

p
a x x




2

.
cosh[ ( )]

0

ia t
i ae

q
a x x






                                       (16) 

Figure 4 shows the real part of the function p(x,t) (16) when σ = 1, a = 3 

 

 

 

 

 

 

 

 

 

Figure 4. The real part of the function 

p(x,t) (16) when σ = 1, a = 3. 
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It is easy to see that for a ∈ R, x0 = 0, σ = −1, the solution (16) also satisfies equations (8) with 

reduction (5c). 

In the second special case 

2

0
4

b
c


 

 

 and equation (10) is also reduced to the first order differential equation 

2

2

df b
f

dx
 



 or  
2( )

.
2

d f b
f

dx
 




 

 By introducing a new variable ,f f  separating the variables and integrating, we have 

.
2

2

df
x

b
f

 


 
 
 

 

Calculating the integral standing on the right side and expressing the function h, we obtain, depending 

on the sign of b two different cases 

1. If b = 2a2 > 0, then 

( ) ctg[ ( )]
0

a
f x a x x 



 

and  

22
ctg[ ( )],

0

ia tae
p a x x 


ctg

22
[ ( )].

0
ia t

q ae a x x


                                   (17) 

2. If b = −2a2 > 0, then 

( ) tanh[ ( )]
0

a
f x a x x 



 

and 

22

tanh[ ( )],
0

ia t
ae

p a x x



 


22
tanh[ ( )].

0
ia t

q ae a x x                              (18) 

Figure 5 shows the real part of the function p(x,t) (18) when σ = 1, a = 3 

 

 

 

 

 

 

 

 

 

 

Figure 5. The real part of the function 

p(x,t) (18) when σ = 1, a = 3. 
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It is easy to check that when a ∈ R, x0 = 0, σ = −1, the solution (18) also satisfies equations (8) with 

reduction (5c). 

 

7. Conclusion 
In conclusion, we note that the solutions found above satisfy the subsequent odd equations of the AKNS 

hierarchy, but with a different coefficient before the variable t. In particular, substituting (6) into 

equation 

3 4+ ( , )=0tip H p q  

and simplifying, we obtain (for b = b3). 

− b3f  − 6σ2f5 + 10σffx
2 + 10σf2fxx – fxxxx = 0.                          (19) 

Suppose that the function f (x) satisfies equations (9) and (10). 

Then 

fxxx = 6σf2fx + bfx 

and 

fxxxx = 12σffx
2 + 6σf2fxx + bfxx 

or  

fxxxx = 24σ2f5 + 20σbf3 + 12σcf + b2f.                                            (20) 

Substituting (20), (9) and (10) into (19) and simplifying, we obtain 

b3 = −b2 −2σc. 

Naturally, the Darboux transformations of the solutions found will also satisfy all odd equations of 

the AKNS hierarchy with corresponding reductions and their mixed forms. 
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