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Abstract. Nowadays, the space weather issues are of a great importance, especially, for all
satellites operators or ground-based electrical and electronic systems caused by geomagnetic
storms. In spite of many studies on the changeable Sun and the fluctuations in the interplanetary
space triggered by solar-driven disturbances, the question, which of the components of
geomagnetic storms influence the strongest the electrical and electronic systems is still open.
Here, we consider the data of electrical grids breakdowns having unidentified reasons, as well
as failures connected to the aging of the infrastructure elements and breakdowns of electronic
devices, which occurred during the periods of an increased geomagnetic activity. Mathematical
and statistical methods, among them neural net clustering, demonstrate that there exist
connections between the groups of the coefficients characterizing the state of Earths vicinity
during magnetic storms and the number of failures in electrical network.

1. Introduction

Our home - Earth is not located in a quiet region of the Universe. It is continuously exposed
to a quasi-electrically neutral stream of charged particles, which is constantly emitted by the
Sun, in the form of solar wind. Solar wind, moving with an average speed of 400 km/s, carries a
frozen in magnetic field [12]. When solar wind, with frozen magnetic field, reaches the vicinity
of the Earth, the Earth’s magnetic field prevents its from penetrating deep into the geosphere
[13]. However, the Earth’s magnetosphere does not protect everywhere with the same power.
In the equatorial area, this shield is the strongest, but around the poles, the Earth’s magnetic
field is the weakest and there are particles of solar wind penetrating the ionosphere, which
occure as spectacular Aurora Borealis or Aurora Australis at high latitudes. There are, however,
moments when, in addition to solar wind, the coronal mass ejecta (CME) leave the Sun [11]. And
enormous amount of matter and energy causes the Earth’s magnetic field to be disturbed and
we are dealing with the phenomenon of a magnetic storm. The faster CME and more oriented
towards the Earth, the stronger is the impact. At that time, numerous effects are induced on
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Earth and its atmosphere, such as degradation or blocking of high-frequency radio waves used
in radio communication, by the induction of extra currents in the ground. Furthermore, we can
observe that the power transmission grids can be degraded and the signals from radio navigation
systems (GPS and GNSS) can be modified causing lower accuracy [1, 15, 2]. Also, auroras are
observed at lower latitudes [16].

The parameters that depict the behavior of the solar wind are its speed, density and
temperature, as well as the strength of the heliospheric magnetic field, measured by the probes
in the interplanetary space. The state of the Earth’s magnetic field is defined by the values of
the strength and components of the Earth’s magnetic field measured in numerous observatories
located all over the Earth. Geomagnetic indices such as Dst, Kp, Ap, and AE are used to
characterize the strength of disturbances of the Earth’s magnetic field.

A huge quantity of natural physical data that we obtain from stations conducting observations
of the Earth’s magnetic field (e.g., the Earth Observatory and climate and environmental science
at NASA, The Institute of Geophysics in Polish Academy of Sciences in Belsk, GFZ German
Research Centre for Geosciences in Potsdam, etc.) in conjunction with statistical techniques
and methods are used in geomagnetic storms’ analysis processes. The complexity of these
multidimensional analyzes leads to a variety of statistics and coefficients. Understanding the
importance and significance of these statistics and coefficients gives ”in times of data” enormous
possibilities. Correlation analysis, regression analysis, analysis of variance (ANOVA/MANOVA),
canonical analysis, discriminant analysis, principal components and classification analysis,
neural net clustering and many, many other give a wide spectrum of knowledge in physics, in
mathematics, but also in medicine, the computer science, energetics, etc., [14, 9, 4]. Nowadays,
one of the most popular method to study big data is the neural network.

The aim of this paper is to analyze the problem of space weather effects and the indices
of magnetic storms which influence the most the ground-based electrical systems. We study
whether, and, in what extent, the Polish energy infrastructure is affected by the space weather
outcomes. We present that there exist connections between the groups of the coefficients
characterizing the state of Earth’s vicinity during magnetic storms and the number of failures
in electrical network in southern Poland. Such analysis is presented in the next sections of
this paper. This article is organized as follows: in Section 1 we shortly point the problem of
space weather, the changeable Sun and the fluctuations in the interplanetary space triggered by
solar-driven disturbances. Section 2 characterizes electrical grids in the southern Poland and
describes common causes of their failures. Here, we introduce data analyzed in this paper. In
Section 3 we present applied methods and discuss our results.

2. Characteristics of the electrical grids in the southern Poland and the most

common causes of their failures

2.1. Solar storms-a short overview

The unique phenomenon of the Sun’s activity is the solar wind - an extension of the solar corona
into interplanetary space [12], changing in time and space. Due to this extension, the powerful
events taking place on the Sun: e.g. solar flares (SFs), CMEs, etc. cause the disturbances in
the interplanetary space. The term space weather is defined as the set of the solar-driven effects
affecting the Earth’s environment. Interactions of Sun-induced-phenomena with the Earth’s
magnetic field can lead to geomagnetic disturbances. Geomagnetic storms are classified by the
geomagnetic indices: Dst, Kp, Ap, and AE. Strong magnetic storm affects the normal operation
of ground located electrical systems and causes damages of satellites and its equipment, which
impacts satellite phones, GPS systems, etc.
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2.2. Electrical grids failures

We consider data of the electrical grid failures (EGF) from the Distribution System Operator
(DSO) Tauron, which has the largest share on the electricity sales market in Poland. This DSO
supplies ∼25% electricity of Poland, therefore there is important to understand the nature of
these failures, which could be linked with geomagnetic storms. Our data concern two periods:
year 2010 and period at January-July 2014. In 2010, DSO noticed the number 25616 of minor
failures, whilst in January-July 2014 it was 30155. All these failures we have grouped into six
more general clusters according to possible causes (see, A-F causes).

Table 1. Electrical grids disruptions causes in southern Poland energy distribution network in
2010 and in period of January-July 2014.

Cluster Description Number % Number %
of the cluster of failures of failures of failures of failures

in 2010 in January-July
2014

A Meteorological effects 3653 14.26 9004 29.8
B Operational shutdowns 16614 64.86 9703 32.0
C Vandalism 824 3.22 792 2.6
D Aging 1917 7.5 6209 20.6
E Electronics devices 32 0.1 1181 3.91
F Unidentified resons 2576 10.1 3266 10.8

We can see that the clusters A-C in Table 1 can be treated as objective causes, whereas the
groups D-F can be associated to space weather effects. It gives 4525 failures in 2010 and 10656
in the first seven months of 2014, which might have solar origin, and only these failures are
considered in the further analysis.

2.3. Space weather event in April 2010

During considered time, we have investigated a few space weather events. One of them is the
event observed in April, 5-7, 2010 (some details of behavior of solar geomagnetic indices data
for this period we can see in the Table 2). At the beginning of April 2010 during of enhanced
solar and geomagnetic activity we could observed the change of the parameters. Then Kp-index
reached almost 8, HMF strength increased almost three and a half times during only five hours,
reaching value 18.8 nT at noon on 5th of April. Bz component was very changeable during
this time interval, varying from -7 nT up to 11.5 nT. Solar wind speed grew almost twice up
to 814 km/s in early afternoon on 5th of April. Even more pronounced effect was visible in
solar wind temperature which increased from less than 200000 K up to more than 1000000 K
during few hours. Solar wind density grew three times up to 12 n/cc at noon on 5th of April.
Exactly at the same time electric field dropped to -8.6 mV/m and was very variable during this
period. Earlier, on 3rd of April at 10:33 UT the Halo CME occurred with preceding solar flare
having the onset at 9:04 UT. CME apparent speed was 668 km/s and space speed 939 km/s
(https://cdaw.gsfc.nasa.gov). All of the above mentioned effects had their reflections in the
geomagnetic indices alterations. Ap-index increased from around 15 nT up to almost 180 nT in
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the morning of 5th of April. At the same time AE-index exceeded -1400 nT. One day later, in
the early afternoon of 6th of April Dst-index dropped around four times to -81 nT.

Table 2. Behavior of the values of some parameters of solar wind and geomagnetic indices for
event in April, 5-7, 2010

Kp B Bz Speed Temp. Density of Electric Ap AE Dst
index [nT] [nT] of wind of solar solar wind field [nT] [nT] [nT]

[km/s] wind [K] [n/cc] [mV/m]

ր 8 ր 18,8 -7÷ 11 ր 814 2 · 105÷ ր 12 ↓ -8,6 ր 180 ր 1400 ↓ -81
106

3.5× big 2× 3× big 4×
varia- varia-
bility bility

2.4. Effects of space weather on electrical transmission network

Solar storms are a phenomenon that has a comprehensive collection of different consequences
on industrial systems like power transmission systems, oil and gas pipelines, telecommunication
cables, and railway equipment. During severe solar storms, a geomagnetically induced current
(GIC) starts to flow through long conductors, such as power lines and pipelines. GIC is caused
by the interaction between the intensive movements in the interplanetary space and the Earth’s
magnetic field due to, e.g., coronal mass ejecta transferring its energy to the magnetosphere.
As a violent stream of particles penetrates the Earth’s magnetosphere (often referred to as a
geomagnetic storm) it can result in a high current electrojet in the ionosphere. Changes in the
current of the electrojet cause fluctuations in the geomagnetic field, which under Faraday’s Law
of induction, induces an electric field [17]. This electrojet can reach several million amperes
during geomagnetic storms.

The power grids are todays systems the most vulnerable to GIC [6], and a great deal of
research has been carried out about GIC impact on power systems. These research underline
the need to decrease the GIC influence on power systems. It can be done by two ways 1) block
the flow of GIC and design equipment to be GIC-insensitive, but this is expensive and not
simple, and 2) forecasting GIC to allow systems operators take actions to minimize problems
in their systems. In these contexts, important is to fully understand all relationships between
measurable parameters describing the state of the interplanetary space and failures of the power
systems occurring at a similar time.

3. Methods applied in analysis

In this work we study a set of 16 parameters of solar wind and geomagnetic field with 72
three-hours observations of each parameter, which might be essential for explanation of causes of
the failures in the electrical network. Here, we present three methods, i.e., neural net clustering,
discriminant analysis and a method of principal components and classification analysis in order
to show that there exist connections between the groups of the coefficients characterizing the
state of Earths vicinity during magnetic storms and the number of failures in electrical network
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for southern Poland. Moreover by using above methods we demonstrate that the question
about uniqueness of the solar and geomagnetic components which influence the strongest on the
electrical systems is still under consideration.

3.1. Method of neural net clustering

Now, we deal with the method of neural net clustering, i.e., we study Self Organizing Maps
(SOM) of Kohonen [8, 7]. SOM are used to calculate and analyze signals, moreover, they realize
mappings of the input variables to output ones. The basic unit is a neuron. It is an approximate
mathematical description of the human neuron. In real neural networks exist many neurons and
their migration process is very large. The migration process leads to grouping of similar objects
in compact region. Additionally, we can study the network itself or the connection of neurons
only. Model of the neuron used in the Kohonen network works in this way that on the input
is calculated the distance between the input vector xi and the weight vector wi, (i = 1, . . . , n),
i.e., q =

∑n
i=1(xi − wi)

2, then on the output we observe that the signal y is the bigger if their
distance q is smaller, i.e., y = f(q) = 1

√

q+ǫ
, ǫ means some error. Self organization leads to the

fact that neurons which surround similar input objects, in the topological layer of the network
are as neighboring neurons. Due to the influence of the neighborhood, the topological layer
neurons form clusters. Kohonen’s network strives to create the optimal map showing relations
between the input. In laboratory conditions, it is easy to obtain the Kohonen network, which
will correctly differentiate individual situations occurring in the multidimensional data space.
Unfortunately, this is not so easy when we analyze the actual multidimensional set of data. In
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Figure 1. SOM neighbor weight distances
for the considered solar and geomagnetic
parameters for event in April, 5-7, 2010
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Figure 2. SOM sample hits for the considered
solar and geomagnetic parameters for event in
April, 5-7, 2010

the Fig.1 we see that darker colors represent longer distances whilst lighter colors mean smaller
distances. The belt of darker segments passes in the further middle area, which may suggest that
the SOM focused the solar and geomagnetic parameters on certain groups. The default SOM
topology is hexadecimal. Among sixteen considered parameters, only three are distinguished
and among them the number 3 is the most important (see, Fig.2). We have received the SOM
network for weights, i.e. we have received the weight planes for each element of the input vector.
As before, darker colors represent larger weights. In case the connection patterns of the two
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Figure 3. SOM input planes for the considered solar and geomagnetic parameters for event
in April, 5-7, 2010. Here input 1 is Kp-index, input 2 is GCR, input 3-B,input 4-Bx,input
5-By,input 6-Bz,input 7-ProtonTemp.,input 8-ProtonDensity,input 9-Flow Speed, input 10-Flow
Pressure,input 11-Ey,input 12-Plasma Beta,input 13-A.M.Number,input 14-Dst-index,input 15-
Ap-index,input 16-AE-index
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inputs were very similar, it can be assumed that the input data is strongly correlated. Observing
the Figure 3, it can be seen that the planes 3 and 10, as well as 7 and 15; 1 and 16 are similar
to each other.

3.2. Method of discriminant analysis

Discriminant analysis is the method based on multidimensional statistics and is used to resolve
which variables distinguish two or more naturally emerging groups [4]. With this method,
we can determine the rules of conduct that assign multidimensional objects to one of many
populations with known parameters with possibly minimal classification errors. The main idea
of the discriminant analysis is the answer a question ”whether the groups of observations for
some variable differ in terms of the average or not”, after that discriminant analysis uses this
variable to predict adherence to a group. In the case of a single variable, the answer to a question
whether the variable discriminates groups, i.e., two or more groups differ significantly from each
other of the average, we obtain by the F-test, as in Analysis of Variance (ANOVA) [4].
F-test is obtained as the ratio of the between-groups variability called Mean Square Effect

(MSeffect) to the within-group variability called Mean Square Error (MSerror). If between-
groups variance is really large, there must be significant differences between the means. In the
case when we consider many variables, the matter is the more computationally complicated.
We consider a matrix of total variances and covariances; in addition, we have a matrix of
the within-group variances and covariances. To resolve whether there exist any significant
differences (relating to all variables) between groups or not, we compare these two matrices
applying multidimensional F-test (like in multivariate analysis of variance (MANOVA)) [4].

Below we present results of discriminant analysis for the failures of electrical grids caused by
the aging that we obtain for observations on the Earth during the geomagnetic storm in April,
5-7, 2010 (see Tables 3-5). Here, we have divided type of failures into 3 groups, i.e., ”gr.1”
means 0 failures connected with aging of electricity infrastructure’s elements, ”gr.2” means the
number of the failures connected with aging in the interval (0, 10) and ”gr.3” means the number
of failures ≥ 10.

Here, we have chosen progressive step analysis. With this choice, we have introduced
variables to the model one by one, always choosing the variable that makes the most significant
contribution to discrimination. With this way we can build the best prediction of the failures,
knowing the variables selected for this model.

Table 3. Discriminant Function Analysis Summary in April, 5-7, 2010. There are 7 variables
in the model and 3 group for Aging (grouping variable). Wilk’s Lambda: 0.62054 approx.
F (14, 126) = 2.425, p < 0.0048

Variables Wilk’s Partial F-remove p-value Toler. 1-Toler.
Lambda Lambda (2, 63) (R-square)

Dst 0.66703 0.93031 2.35976 0.10274 0.35013 0.64987
Ey 0.68487 0.90607 3.26568 0.04472 0.36863 0.63137
B 0.67675 0.91694 2.85344 0.06512 0.24293 0.75707
Kp 0.70557 0.87949 4.31616 0.01751 0.18252 0.81748
AE-index 0.65179 0.95204 1.58670 0.21267 0.12418 0.87582
Bx 0.64116 0.96784 1.04682 0.35708 0.69818 0.30182
A.M.Number 0.64062 0.96865 1.01936 0.36670 0.35679 0.64321
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Table 4. Discriminant Function Analysis Summary in April, 5-7, 2010. Canonical variables for
EGF caused by the aging of infrastructure’s elements.

Variables Root 1 Root 2

Dst 0.00306 0.064744
Ey 0.63589 0.678404
B 0.43381 0.266928
Kp -1.02001 -0.267892
AE-Index 0.00464 0.001090
Bx 0.01299 -0.221817
A.M.Number 0.21505 0.198882

Constant -3.34625 -0.893031
Cum.Prop 0.60125 1.00000

Table 5. Discriminant Function Analysis Summary in April, 5-7, 2010. χ2-tests for 7 variables
in the model

Roots Eigenvalue Canonical Wilk’s χ2 df p-value
removed R Lambda

Root 1 0.32543 0.49551 0.62054 31.49289 14 0.00473
Root 2 0.21583 0.42133 0.82248 12.89814 6 0.04468

Table 6. Discriminant Function Analysis Summary in April, 5-7, 2010. Means of canonical
variables for groups EGF caused by the aging of infrastructure’s elements.

Group for Aging Root 1 Root 2

gr.1 -0.02750 0.12221
gr.2 -1.33352 -1.89153
gr.3 2.92142 -1.25659

Discriminant function analysis shows that instead of sixteen parameters we can deal only with
seven ones, i.e., Dst, Ey, B, Kp, AE, Bx and A.M.Number which are the most significant in our
model, despite that there are only two components statistically significant (see, Table 3). The
partial value of Wilk’s Lambda indicates that the Kp-index has the largest (the Lambda fraction
is the smallest) contribution to general discrimination of our analysis and the next variables are
Ey, B and Dst. The variable which has the smallest, but still highly significant contribution,
is the A.M.Number. In the Table 3, the column before last presents the value of redundancy
for given variable. The tolerance is the smallest for AE-index, it means that the variable’s
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Figure 4. Correlation matrix for the considered solar and geomagnetic parameters for event in
April, 5-7, 2010

contribution to discrimination of this variable is minimal in the comparison with the contribution
of the others. Moreover, from Table 5 we see that the weights of the canonical variables like
Kp-index, Ey and B (Root1 in the Table 4) are statistically significant with p = 0, 004726. If
these parameters rise, then the most probable is that the number of failures will grow in the
3rd group, see Table 6. Unfortunately, above components are not the same for other events,
we have discriminated 14 from 16 parameters (AE-index, Bx, By, GCR, Dst-index, Bz, Ey,
Proton Density, B, A.M.Number, Plasma Beta, Proton Temperature and Flow Speed), whereas
in other event only 8 from 16 (Bx, A.M.Number, Dst-index, Bz, Kp-index, B, Flow Speed and
Plasma Beta) which had the most significant contribution to discrimination. In summary: the
parameters Kp-index, Ey, B and Dst-index the most discriminate the 3rd group.

3.3. Method of principal components and classification analysis

Very real problem which has to be taken into account is a relation between investigated
parameters (see, Fig.4). Unfortunately, discriminant analysis demands that the correlation be-
tween variables was as small as possible. Therefore, as an additional method we will use the
principal components analysis.

The principal components analysis is the set of the methods and procedures that focus on
determining completely new variables (principal components) Zi, i = 1, . . . , k being a linear
combination of observed (primary) variables X1, X2, . . . , Xn [10]

Zi = ai1X1 + ai2X2 + . . .+ ainXn, (1)

where ai1, ai2, . . . , ain are coefficients of ith main component. Without loss of generality we
obtain a new mathematical model that contains reduced primary variables. The principal
components analysis allows to indicate these primary variables that have a large impact on the
appearance of individual major components, i.e., only those such form a homogeneous group.
The main component is then the representative of this group and the next components are
mutually orthogonal (uncorrelated) and their number k is less than or equal to the number of
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original variables n. Each of the principal component is described by eigenvalue, eigenvector,
factor coordinates of the variables, variable contribution and communalities [10]. The eigenvalue
gives information about which part of the total variability is explained by the given principal
component. The eigenvector expresses the influence of the individual primary variables on a
given principal component. It contains the coefficients ai1, ai2, ..., ain and the sign of those
coefficients indicates the direction of influence. Factor coordinates the variables, like the
coefficients included in the eigenvector, show the influence of particular variables on a given
principal component. These are values that present which part of the variance of a given
component originates from primary variables. When the analysis is based on a correlation
matrix, these values are interpreted as correlation coefficients between the original variables and
the given principal component [10]. Variable contribution is based on the value of determination
coefficients between the original variables and the given principal component. It indicates what
percentage of variability of a given principal component can be explained by the variability of
individual primary variables. Communalities are based on the determination coefficients. They
indicate what percentage of the variability of a given primary variable can be explained by the
variability of the first few principal components. For example, the result for the second variable
contained in the fourth column (Table 9) for the principal component tells us what percentage of
the variability of the second variable can be explained by the variability of the first four principal
components.

Table 7. Bartlett test and the KMO coefficient of considered solar and geomagnetic parameters
for event in April, 5-7, 2010

Summary

Number of analyzed variables 16
Number of analyzed cases 72
α 0.05

Bartlett test
H0 : M = I

H1 : M 6= I

χ2
empir. value 1666.13098

χ2
crit. value 146.56736

number of degrees of freedom 120
p 0.000000

Kaiser-Mayer-Olkin coefficient
KMO 0.99

The first step, which we perform, before proceeding analysis of components is checking the
advisable of conducting this analysis. In our analysis we start from verification by Bartlett
test and the fixing the Kaiser-Mayer-Olkin (KMO) coefficient [10]. Bartlett test checks whether
there are significant differences between the correlation matrix M and the unit matrix I. If we
rejected hypothesis H0 then there exists justifiability of the principal components analysis. The
coefficient KMO∈ [0, 1], if KMO< 0.5 then we don’t have bases to do the principal components
analysis.
From the Table 7 we can see that p < α (p=0.000000) in Bartlett test, so there exists the



8th International Conference on Mathematical Modeling in Physical Science

Journal of Physics: Conference Series 1391 (2019) 012107

IOP Publishing

doi:10.1088/1742-6596/1391/1/012107

11

Figure 5. The scree test of considered solar and geomagnetic parameters for event in April,
5-7, 2010

difference between M and I which is statistically significant. KMO coefficient equals to 0,99 so
assumptions to principal components analysis are fulfilled.

Table 8. Eigenvalues of correlation matrix of considered solar and geomagnetic parameters for
event in April, 5-7, 2010

Value number Eigenvalue % Total variance Cumulative Eigenvalue Comulative %

1 6.74623 42.16393 6.74623 42.16393
2 3.97283 24.83021 10.71906 66.99414
3 1.40853 8.80333 12.12760 75.79747
4 1.13010 7.06313 13.25770 82.8606
5 0.84738 5.29611 14.10507 88.15671

6 0.57547 3.59669 14.68054 91.7534
7 0.44936 2.80850 15.12990 94.5619
8 0.29524 1.84522 15.42514 96.40712
... . . . . . . . . . . . .

16 0.00272 0.01699 16.00000 100.0000

Presented eigenvalues (Table 8) indicate that five main components will supply us with the same
knowledge that earlier 16 components. The eigenvalues for the first four components are more
than 1 and the percentage of the variance explained by them is 82,86%.

Only factor with eigenvalue greater than 1 can be considered, whilst factor which extracts
less than one original variable is dropped. This criterion was proposed by Kaiser in 1960. In our
case we also present fifth eigenvalue according to Jolliffe criterion [5] which is similar to criterion
of Kaiser but here the critical value for eigenvalue is ≥ 0.7. The fifth component explains much
less variance (5.30%) and its eigenvalue is 0.847377.
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The scree test is a popular graphical method to study the number of canonical components
first proposed by Cattell (1966) [3]. In our study we plot the eigenvalues as a simple line plot
(Fig.5). From the scree test we conclude that after the fifth eigenvalue the line tends into the
horizontal line. The total percentage of the variance explained by five canonical components is
88.16%.

Table 9. Communalities of considered solar and geomagnetic parameters for event in April,
5-7, 2010

Variable From 1 factor From 2 factor From 3 factor From 4 factor From 5 factor

Kp-index 0.83339 0.85601 0.87892 0.91500 0.91509
GCR 0.28831 0.45775 0.69038 0.73827 0.86859
B 0.61965 0.87553 0.88105 0.96069 0.96219
Bx 0.28051 0.28881 0.42688 0.44807 0.76181
By 0.17098 0.47734 0.63750 0.69941 0.69941
Bz 0.35074 0.74136 0.84454 0.87615 0.89127
Proton Temp. 0.09092 0.40171 0.73504 0.86843 0.90912
Proton Density 0.00668 0.72980 0.73816 0.85465 0.92011
Flow Speed 0.52183 0.59710 0.66245 0.85587 0.87316
Flow Pressure 0.19258 0.90676 0.92592 0.92691 0.94723
Ey 0.33081 0.77003 0.86703 0.89136 0.90870
Plasma Beta 0.53894 0.60705 0.72895 0.78182 0.83113
A.M.Number 0.56049 0.60998 0.61324 0.80910 0.93805
Dst-index 0.51837 0.75908 0.80751 0.88753 0.89349
Ap-index 0.59890 0.76819 0.81477 0.86740 0.89764
AE-index 0.84308 0.87250 0.87517 0.87697 0.88801

Table 9 presents in the column entitled ”From 5 factor” that for the first five components,
the variance of each variable is represented by using these components in at least 69.94%.
Additionally the communalities are at similar very high level.

Applying eigenvectors, the factor coordinates of the variables and the variable contributions
we obtain explanation which variables are the main components. In our case it is:

• The eigenvector for the first component is the largest for AE-index and is equal -0.3535,
as well as for Kp-index is -0.3515 (see Table 10). The factor coordinates of the variables
for both AE- and Kp-index inform that the correlation between the first main component
and AE-Index as well the first main component and Kp-index is very high and amounts
-0.91819 and -0.91290, respectively (see Table 11). It gives around 12.5% for AE- and
12.35% Kp-index of the variable contributions in the first component, see Table 12.

• In the case of the second component the eigenvector is the largest for Proton Density and
is equal -0.42663, as well as for Flow Pressure=-0.42399. The factor coordinates of the
variables for both Proton Density and Flow Pressure informs that the correlation between
the first main component and Proton Density, as well as the first main component and Flow
Pressure is very high and amounts to -0.85036 and -0.84509, respectively. It gives around
18.2% for Proton Density and 18% Flow Pressure of the variable contributions in the first
component (Tables 10-12).
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Table 10. Eigenvectors of correlation matrix of considered solar and geomagnetic parameters
for event in April, 5-7, 2010

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Kp-index -0.35147 -0.07546 -0.12753 0.17867 -0.00999
GCR 0.20672 -0.20651 -0.40639 -0.20586 -0.39216
B -0.30307 -0.25378 0.06260 -0.26547 -0.04209
Bx -0.20391 0.04569 -0.31309 -0.13692 0.60848
By 0.15920 0.27769 -0.33720 0.23404 -0.00181
Bz 0.22801 -0.31356 0.27066 0.16723 -0.13360
Proton Temp. -0.11609 -0.27969 -0.48647 0.34356 -0.21911
Proton Dens. -0.03146 -0.42663 -0.07704 -0.32105 0.27793
Flow Speed -0.27812 -0.13765 0.21538 0.41371 0.14284
Flow Pressure -0.16895 -0.42399 0.11664 -0.02956 0.15484
Ey -0.22144 0.33249 -0.26243 -0.14571 0.14305
Plasma Beta 0.28264 -0.13093 -0.29418 0.21629 0.24124
A.M.Number 0.28824 -0.11160 0.04813 0.41630 0.39010
Dst-index 0.27719 -0.24614 -0.18542 -0.26609 0.08382
Ap-index -0.29795 -0.20643 -0.18185 0.21578 -0.18893
AE-index -0.35351 0.08605 -0.04348 0.03995 -0.11412

• In the case of the third component we obtain Proton Temperature, for fourth A.M.Number,
whilst for the last component we get HMF Bx component (Tables 10-12).

• We conclude that the first component we can call AE-index, the second Proton Density,
the third Proton Temperature, the fourth A.M.Number and the fifth HMF Bx component.

Table 11. Factor coordinates of the variables of considered solar and geomagnetic parameters
for event in April, 5-7, 2010

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Kp-index -0.91290 -0.15041 -0.15136 0.18994 -0.00920
GCR 0.53694 -0.41163 -0.48231 -0.21884 -0.36099
B -0.78718 -0.50584 0.07430 -0.28221 -0.03875
Bx -0.52963 0.09108 -0.37158 -0.14555 0.56012
By 0.41349 0.55350 -0.40019 0.24880 -0.00167
Bz 0.59223 -0.62499 0.32122 0.17777 -0.12298
Proton Temp. -0.30153 -0.55748 -0.57735 0.36523 -0.20170
Proton Dens. -0.08173 -0.85036 -0.09143 -0.34130 0.25584
Flow Speed -0.72237 -0.27436 0.25562 0.43980 0.13149
Flow Pressure -0.43884 -0.84509 0.13843 -0.03142 0.14254
Ey -0.57516 0.66273 -0.31146 -0.15596 0.13168
Plasma Beta 0.73413 -0.26097 -0.34914 0.22993 0.22207
A.M.Number 0.74866 -0.22245 0.05712 0.44255 0.35910
Dst-index 0.71998 -0.49062 -0.22007 -0.28287 0.07716
Ap-index -0.77388 -0.41145 -0.21583 0.22939 -0.17391
AE-index -0.91819 0.17152 -0.05160 0.04247 -0.10505
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Table 12. Variable contributions of considered solar and geomagnetic parameters for event in
April, 5-7, 2010

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Kp-index 0.12353 0.00569 0.01626 0.03192 0.00010
GCR 0.04273 0.04264 0.16515 0.04237 0.15378
B 0.09185 0.06440 0.00392 0.07047 0.00177
Bx 0.04158 0.00208 0.09802 0.01874 0.37025
By 0.02534 0.07711 0.11370 0.05477 0.00000
Bz 0.05199 0.09832 0.07325 0.02796 0.01784
Proton Temp. 0.01347 0.07822 0.23665 0.11803 0.04801
Proton Density 0.0099 0.18201 0.00593 0.10307 0.07724
Flow Speed 0.07735 0.01894 0.04639 0.17115 0.02040
Flow Pressure 0.02854 0.17976 0.01360 0.00087 0.02397
Ey 0.04903 0.11055 0.06887 0.02152 0.02046
Plasma Beta 0.07988 0.01714 0.08654 0.04678 0.05820
A.M.Number 0.08308 0.01245 0.00231 0.17330 0.15218
Dst-index 0.07683 0.06058 0.03438 0.07080 0.00702
Ap-index 0.08877 0.04261 0.03307 0.04656 0.03569
AE-index 0.12497 0.00740 0.00189 0.00159 0.01302

3.4. Summary

In our article, we used three computational methods, i.e., Self Organizing Maps type neural
network method, a discriminant analysis method and a principal component analysis method.
Using the above mentioned methods, we show groups of solar and geomagnetic parameters that
have the strongest influence on the occurrence of an aging type in electric networks on the
Earth. The parameter groups that we have received do not give a unique answer, although
we can see a parameter that repeats in each of them. Our results display that electrical grids
failures from groups D-F in southern Poland can occur more frequently after the solar-driven
effects are generated at the Earth’s vicinity.
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