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Abstract. Commercial Portland cement is the most used construction material in the world, due 

its durability, versatility and economy generated in civil works, which follows a growth trend; 

however, a large amount of energy is required for its production, which generates a large amount 

of greenhouse gas emissions and air pollutants. Consequently, a large part of research has 

focused on mitigating these effects by partially replacing supplementary cementitious materials. 

Therefore, this research aims to evaluate the performance of commercial cement paste, partially 

replacing it with fly ash and blast furnace slag, characterized by scanning electron microscopy, 

X-ray fluorescence, surface area to establish variations of setting times and heat of hydration in 

hardening process. The results established that fly ash and blast furnace slag didn't generate 

sufficient capacities to develop stable cementation reactions and therefore higher strengths, due 
to their compositions surface area and the high content of alternative cements present in the 

commercial Portland cement since its manufacture. Nevertheless, the fly ash and blast furnace 

slag are alternatives in mitigating the environmental effect generated by commercial cements. 

1. Introduction 

Cement is the largest manufactured material used for construction in the world, additionally to being 

indispensable in buildings and infrastructure, cement is essential for economic development; however, 
this industry faces great challenges, due to high cost of energy resources, greenhouse gas emissions and 

air pollutants generated in its production process [1-2]. Thus, there are efforts by researchers and 

professionals in the construction industry to address this problem through the use of industrial by-
products, in search of generating alternatives for the development of supplementary cementitious 

materials (SCM) [3], due to the similarity of hydration processes, production of hydrated calcium 

silicates and aluminates, and setting of cement mixtures, routinely specified in the manufacture of 
Commercial Portland Cement (CPC) [4,5]; consequently, these new cements contribute to the fight 

against the depletion of natural resources, the reduction of greenhouse gases and the elimination of solid 

waste [6-7]. Consequently, in Colombia, the new performance specification for hydraulic cement, NTC 

121 of 2014 [8], adopted from the ASTM C-1157 standard [9], allows the compositional modification 
of cement or its components without restrictions provided it meets standards based on characteristics 

related to the performance of cement mixes; However, the reactivity of the SCM depends on the quality 

of the industrial processes, types of SCM and proportions implemented [8,9]. Therefore, the present 
investigation aims to add industrial waste such as fly ash (FA) and granulated blast furnace slag (GBFS) 

according to standard practices ACI 232.2R and ACI 233R [10,11], in different combinations and 
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proportions, with the purpose of assessing their performance as SCM in the hydration, setting and 

mechanical resistance process with partial replacement of CPC, in search of clarifying controversies and 

disagreements in the effects of adding this kind of SCM in Colombian CPCs [4,12] and its use as 
alternative in mitigating the effects of manufacturing CPC. 

2. Methodology 

2.1. Materials 
The CPC of general use is produced by Colombian cement companies [13]. FA and GBFS are produced 

and supplied by the thermoelectric power plant "Termopaipa" and by the steel company "Acerías Paz 

del Río" respectively. Before being used, GBFS was dehydrated and crushed, then sieved through a No. 

60 sieve (250 µm stainless steel mesh). 

2.2. Casting 

270 paste cubes were developed following the ASTM C109 [14], corresponding to 30 combinations of 

CPC, FA and GBFS, using a water/cementing (a/c) ratio of 0.277, following the ASTM C187 [15]. A 
total of three samples are used for each mixture for each test age. 24 hours after mixing, the samples 

were unmolded and cured following the ASTM C192 [16]. 

2.3. Experimental methods 
The scanning electron microscopy (SEM) was carried out by using Zeiss model EVO 420 equipment; 

nitrogen physisorption Analysis was performed at 77 K, following the Brunauer Emmett and Teller 

(BET) model for the determination of specific area, first sample cleaning was performed up to 373 K in 

Micromeritics ASAP 2010 equipment. For the determination of the specific surface area by ASTM C-
204 [17], X-ray fluorescence spectrometry (XRF) was performed using the PANalytical MiniPal 2 

device. As a starting point to know the proportions of the samples, a series of tests were performed on 

cement paste cubes, obtaining the optimal SCM mixtures. The compression resistance of 30 paste 
mixtures with different contents of CPC, GBFS and FA were evaluated mechanically at 3, 28 and 56 

days after the casting. From the results obtained, four optimized mixtures were defined to be used in the 

preparation of samples. The optimized mixtures were evaluated by setting times according to ASTM C-

191 [18] and the determination the heat of hydration by semi-adiabatic conditions followed the BS EN 
196- 9 standard [19]. 

3. Results 

Micrographs SEM of the three cementitious materials used in this research are shown in Figure 1. 
 

 
(a) (b) (c) 

Figure 1. SEM micrographs of cements at 5000x. (a) CPC. (b) FA. (c) GBFS. 

 

The SEM analysis allowed to establish typical microstructural characteristics of AF under study, 
such as its spherical shape, smooth surfaces and high surface area [20,21] and morphological 

characteristics of GBFS such as the larger particle size between cementants, angular shapes and sharp 

edges , presumably due to grinding [22]; this association of factors generates a decrease in surface area 
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and consequently reduction in reactivity, which depends on combining factors such as chemical 

composition, mineralogy and fineness, the latter affecting the degree of hydration, microstructure and 

porosity [23,24], which is consistent with the specific surface results performed according to ASTM C-
204 [25], together with the physisorption analysis using the mathematical treatment proposed by BET; 

The results obtained are indicated in Table 1. 

 
Table 1. Specific surface area by Blaine permeability device and physisorption analysis of 

cementitious materials. 

Material 

ASTM C-204 BET 

Surface area Density Surface area Pore volume Pore size 

(cm2/g) (g/cm3) (m2/g) (cm3/g) (nm) 

CPC 4230 2.90 2.0 0.002 16.9 

FA 4640 2.06 5.0 0.010 7.9 

GBFS 1240 2.86 0.5 0.003 25.5 

 

The specific surface analysis using Blaine and BET showed in Table 1, together with SEM, 
determined that GBFS has the lowest surface area, while FA has low density and high porosity, which 

is consistent with its high surface area and high pore volume, followed by CPC ; therefore, GBFS offers 

the most unfavorable conditions for hydraulic reactions from the point of view of the fineness of the 
material; on the other hand, FA with its high surface area and pore volume, generated less manageability 

in mixtures containing CPC + FA and consequently, less resistance in hardened state. In addition, the 

density values, obtained establish that CPC had been mixed with some mineral additives when compared 

to typical density of ordinary Portland cement (OPC) 3.15 g/cm3 [25], this was reduced to similar values 
to densities of the SCMs evaluated; likewise, the cementitious materials evaluated by X-ray fluorescence 

(XRF) exposed in Table 2. 

 
Table 2. Cementitious materials oxides analysis (% by weight). 

Component CPC FA GBFS 

SiO2 22.80±1.63 60.47±2,69 28.97±1.46 

CaO 57,75±2.44 0.74±0,11 46.60±1.08 

Al2O3 10.87±0.29 26.11±10.81 18.15±3.69 

MnO 1.07±0.38 - 1.90±0.00 

Fe2O3 2.55±2.52 6.58±0.60 1.75±0.23 

SO3 3.07±0.38 - 1.43±0.63 

NiO - - 0.37± 1.14 

K2O 0.54±0.84 1.54±0.14 - 

TiO2 0.28±0.05 1.33±0.51 - 
Five samples of each material were used, using the t-test and a confidence of 
95% (p≤ 0.05). 

 

Based in the Table 2, the CPC has a CaO and SiO2 content greater than 80%, which are the main 

compounds for the development of calcium silicate hydrates and consequently favorable mechanical 

strengths [26,27]. The composition of AF is similar to other studies [26], with majority contents of SiO2 

and Al2O3, and contents less than 10% of CaO; Due to the above and its origin, as result of calcining 
bituminous coal in industrial processes for electric power generation, the FA is classified as a class F 

according to the standard specification for the use of coal fly ash in concrete ASTM C-618 [28]. On the 

other hand, the evaluated components of GBFS, determined that this is classified as basic slag with 
favorable hydraulic reactivity, due to the relationship of the network modifier with the network former 

CaO/SiO2 is greater than 1 [29]. 

The results of the compressive strength of binary paste mixtures at 3.28 and 56 days can be seen in 
Figure 2 and Figure 3. For both SCM additions, the compressive strength is greater as the amount of the 
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CPC increases; In GBFC and FA ratio is directly proportional, however, the latter shows drastic decrease 

in residence from replacement. 

 

 

 

 

Figure 2. Compressive strength of CPC-GBFS 

pastes. 

 Figure 3. Compressive strength of CPC-FA 

pastes. 

 

The same phenomenon is observed in ternary mixtures at 3, 28 and 56 𝑑𝑎𝑦𝑠, shown in Figure 4. 

However, 5 combinations with CPC contents less than 20% and FA greater than 30% didn't form 

sufficient consistency for the process of curing and other resistances are proportional to the CPC content, 

and lower as the SCM content increases; nevertheless, the inclusion of GBFS showed better performance 
than FA; although, the combination of these two SCMs generated lower resistance than binary 

combinations with CPC. 

 

 
Figure 4. Compressive strength in paste cubes of CPC (C), GBFS (G) 
and FA (F). 

 

The results of compressive strength in the binary and ternary combinations at 56 days of setting, are 
summarized and schematized in the ternary diagram shown in the Figure 5, which will help determine 

the mixtures with the highest resistance in order to establish the resistance variation Compression, 

hydration process and setting in time. 

Based on the above, was possible to determine the mixtures with the highest compression resistance 
with the lowest CPC contents due to their higher cost; therefore, the higher the content of SCM, the final 
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cost will decrease and its environmental impact will be reduced [25]. Therefore, four combinations of 

CPC and SCM called a1, a2, a3 and a4 were chosen (Table 3). 

 

 
Figure 5. Compressive strength CPC-GBFS-FA combinations at 

56 days. 
 

Table 3. Cementing mixtures selected for resistance, 

hydration and setting tests. 
Mix Material 

a1 100% CPC 

a2 80% CPC + 20% GBFS 

a3 80% CPC + 20% FA 
a4 60% CPC + 30% GBFS + 10% FA 

 

The evaluation of the setting times in mixtures was carried out according to the ASTM C 191 

standard [18], through the recording of the changes in the penetration depth of Vicat needle during the 
first hours after mixing; the results are shown in the Figure 6. 

 

 
Figure 6. Variation of the needle penetration used for determining 

the setting times. 

 
Mixture a1 and a2 have similar behaviors and holdings of setting times; however, the mixture a3 and 

had an unstable behavior between 150 min and 250 min after setting, however these three mixtures have 

similar final setting times, around 300 min (5h). In addition, the mixture a4 showed instability and delay 
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in the process and fine setting time, about 30% compared to the other mixtures; therefore it is inferred 

that the effect of mixing FA + GBFS generates lower speed and intensity of hydration reactions, causing 

the delay in the beginning and end of setting. 
The intensity of the reactions in the hydration process in the first 52 hours of setting are observed in 

the Figure 8 and Figure 9. 

 

 

 

 

Figure 7. Temperature evolution.  Figure 8. Specific Heat evolution. 

 
The temperature variations represented in Figure 7 show similar maximum reaction times in all 

mixtures; however, the mixture a1 has the highest exothermic reaction due to a greater reactivity in the 

hydration process, which generates greater mechanical resistance, linked to the degree of hydration of 
the cement [30]. Mixtures a2 and a3 have similar exothermic temperatures and specific heat (Figure 8), 

however, these were reduced to 31% ± 7% compared with a1; Similarly, the ternary mixture a4 reduced 

its heat of hydration up to 43% as shown in Figure 8. The above shows the relationship between heat of 

hydration and mechanical resistance, which is greater in the mixture a1. 

4. Conclusions 

The morphological, compositional and surface area characterization, together with the methodologies 

used for the elaboration of different combinations of mixtures between CPC, GBFS and FA determined 
the variation of setting times, heat of hydration and mechanical resistance. This SCM didn't generate 

enough mechanical resistance compared to the CPC due to the effect of the surface area on the 

manageability and setting times, related to the reduction of exothermic reactions, to the extent that the 
addition of SCM increases; nevertheless there are uncertainties generated by the high addition of SCM 

in the CPC since its manufacture. In addition, the GBFS generated an acceptable cementation activity, 

greater than the FA and the addition of SCM didn't affect the generation of exothermic reactions in the 

configuration process; therefore, the use of FA and GBFS are alternative to mitigate the effects of the 
manufacture of CPC in the environment. 
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