Brought to you by:
Paper The following article is Open access

Towards biological quantity theory for nominal property metrology in polyenzymatic devices with living cells

, , , , , and

Published under licence by IOP Publishing Ltd
, , Citation P I Belobrov et al 2019 J. Phys.: Conf. Ser. 1379 012036 DOI 10.1088/1742-6596/1379/1/012036

1742-6596/1379/1/012036

Abstract

Here we discuss the concepts of "biological quantity" and "nominal property" within the framework of the problem of biological measurements based on new specific results of biological analysis using a microfluidic platform and chips developed by our team earlier. It was shown that based on different microfluidic platforms it is possible to develop chips with a polyenzymatic bioluminescent system NAD(P)H:FMN-oxidoreductase-luciferase (Red + Luc), which can be used in various areas of biological analysis. Thus, disposable microfluidic chips with Red + Luc system suitable for field and indoor use were developed using continuous flow microfluidic platform. The use of droplet-based microfluidic platform allowed to develop microfluidic chips with Red + Luc system for long-term continuous measurements of water samples, for example, in places of waste disposal by industrial enterprises. The reference for comparing different biological quantities with each other in the proposed system was a photodetector, which converted non-numeric values and nominal properties recorded by a biological module Red + Luc into numerical variables. Such a reference was implemented as a portable luminometer based on silicon photomultiplier. The results allow to perform other biological measurements and to start the discussion of modern biological concepts in the language of biological measures.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.