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Abstract. Spherical functions are the angular part of the family of orthogonal solutions of the 
Laplace equation written in spherical coordinates. They are widely used to study physical 
phenomena in spatial domains bounded by spherical surfaces and in solving physical problems 
with spherical symmetry. In this paper, the superposition equation of spherical harmonics 
satisfying the Helmholtz equation was obtained. Modelling and visualization of three-
dimensional fields, coordinated with separate spherical harmonics and their superpositions, 
was carried out. 

1.  Introduction 
Due to the decrease in the size of optical devices, much attention has recently been paid to the 
description of non-paraxial propagation of light fields [1-12] and the development of algorithms for 
modeling such propagation [13-26]. 

The nonparaxial scalar model based on Rayleigh-Sommerfeld theory [27] allows to obtain results 
at very close distances from the aperture [28, 29]. Note that the use of a scalar wave model in the near 
diffraction zone is valid only for one of the transverse components of the electric field. Moreover, with 
the increase in the numerical aperture, the role of the longitudinal component of the electric field 
becomes very important, its contribution may exceed the contribution of transverse components [11]. 
However, there are known situations [30-32] when the substance or device is sensitive only to the 
transverse or longitudinal components of the electric field. Thus, scalar field calculations become 
relevant not only for individual components, but also for the whole picture. 

Note that the vector version of Rayleigh-Sommerfeld integrals, as well as the method of plane 
wave decomposition, have a representation of various components of the electromagnetic field 
through close expressions, which allows the use of parallel calculation algorithms and high-
performance computing facilities [33, 34]. 

Laser beams with screw phase features attract much attention of researchers [35-45]. This is due to 
their special properties, including the presence of orbital angular momentum, which is used in optical 
manipulation for rotation of micro-objects captured by the beam [46, 47], for compaction of 
information transfer channels [48-54], as well as for structuring the surface of materials [55-60].  

As a rule, the propagation of such beams is considered in a cylindrical coordinate system [24-26, 
39-42, 61, 62]. However, the shape of objects and optical elements in some applications involve the 
use of a spherical coordinate system. In both cases, the wave function decomposition of the 
corresponding systems is used.  
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In this paper I consider the optical fields, which are a superposition of scalar spherical wave 
functions. The construction and visualization of such fields is the first step to modeling the 
propagation of optical fields based on spherical harmonics decomposition. 

2.  Theoretical part 
The Helmholtz equation in spherical coordinates has the following form: 

 
2

2 2
2 2 2 2 2

1 ( , , ) 1 ( , , ) 1 ( , , )sin ( , , ) 0.
sin sin

r r rr k r
r r r r r

∂ ∂ψ θ ϕ ∂ ∂ψ θ ϕ ∂ ψ θ ϕ   + θ + + ψ θ ϕ =   ∂ ∂ θ ∂θ ∂θ θ ∂ϕ   
 (1) 

Consider the solution in the form: 
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Since only the third term depends on ϕ , let: 
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then 
 ( )( ) exp .imΦ ϕ = ϕ  (6) 

After substituting (5) for (4) and dividing by 2sin θ , we obtain: 
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Next, denoting cosx = θ , sindx d= − θ θ , and 2 2sin 1 xθ = − , we get: 
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Given that Legendre functions ( )( ) m
ny x P x=  satisfy the equation: 
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Then instead of (7) you can write: 
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The solution to this equation 
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are spherical Bessel functions, in particular: 
 ( )( ) .nR r j kr=         (11) 

Thus, the Helmholtz equation (1) is satisfied by the fields representing the superposition of 
spherical harmonics: 
 ( )
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3.  Modelling results 
Table 1 presents the results of the formation of three-dimensional optical fields consistent with 
individual spherical harmonics with fixed indices n and m. Calculations were performed for 

0,5 mλ µ= , in the range of coordinates [ ], , 2 , 2x y z∈ − λ λ . 
 

Table 1. Individual three – dimensional optical fields. 
 m 
  0 1 2 3 

n 

0 

 

   

1 

  

  

2 

   

 

3 
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The resulting fields have an axial (z-axis) symmetry, so for a better representation of the fields in 
table 2 their cross sections are presented, which shows the dependence of the structure of the optical 
field on the orders of the function coefficients. 

 
Table 2. Cross sections of three-dimensional optical fields, for y=0. 

 m 
  0 1 2 3 

n 

0 

 

   

1 

  

  

2 

   

 

3 

    
 
The obtained cross sections indicate that the distribution of the magnitudes in optical fields occurs 

according to a certain principle depending on n and m. 
In the cross section at m=0, the space is "separated" by n planes, forming 2n energy "petals". As m 

increases, the number of "separable" planes decreases and becomes equal to n–m+1, since at m>0 
there is a constant vertical separation of the whole picture, increasing proportionally to m. 

In a three-dimensional field at m=0, a complex of toroidal and two cone-shaped structures is 
formed in an amount equal to n+1. With increasing m, the number of structures decreases and 
becomes equal to n–m. Cone-shaped structures located at the poles at m=0 are modified and 
transformed into toroidal structures in the cases of increasing m due to the appearance of an energy 
gap increasing according to m. 

Table 3 presents the three-dimensional fields agreed by superpositions for all possible m for a 
certain n and it cross section for axes. 

Table 3 and table 4 illustrate the three-dimensional optical fields consistent with the solution 
proposed in the theoretical part. The resulting three-dimensional fields are described by superpositions 
with all possible coefficients m for a particular order n (table 3). The results shown in table 3 and table 
4 show the effect of higher order n fields. 

Table 3 and table 4 show similar results for different superpositions, which indicates a strong 
influence of components of fields with high order n. 

The results in table 5 show that superpositions provide a wide range of different optical fields with 
varying degrees of complexity of structures. From simple as an hourglass to complex, such as some 
twisted "drops". 
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Table 3. Three – dimensional optical fields and their cross sections for fixed order n. 
 n=1, m=-1:1 n=2, m=-2:2 n=3, m=-3:3 

3D 

   
 Intensity Phase Intensity Phase Intensity Phase 

Plane 
ZY 

      

Plane 
XZ 

      

Plane 
XY 

      
 

Table 4. Three – dimensional optical fields and their cross sections for all order n. 
 n=0:1, m=-1:1 n=0:2, m=-2:2 n=0:3, m=-3:3 

3D 

   
 Intensity Phase Intensity Phase Intensity Phase 

Plane 
ZY 

      

Plane 
XZ 

      

Plane 
XY 

      

4.  Conclusion 
In this work, the solution of the Helmholtz equation in the form of superpositions of scalar spherical 
harmonics was obtained, a software tool that implements a mathematical model of this solution was 
developed, 25 solutions were generated and visualized in the form of three-dimensional fields with 
different coefficients, the analysis of the results was carried out. 

The results showed the dependence of the structure of a single spherical harmonic on its orders n 
and m, as well as the weight effect on the overall picture of higher orders in superpositions. 
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Table 5. Complex structures of three – dimensional optical fields and their cross sections. 
 n=0:3, m=n n=0:3, m=0 n=2,3,3, m=1,1,2 

3D 

   
 Intensity Phase Intensity Phase Intensity Phase 

Plane 
ZY 

      

Plane 
XZ 

      

Plane 
XY 
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