Paper The following article is Open access

Verification of Floating Offshore Wind Linearization Functionality in OpenFAST

, , , and

Published under licence by IOP Publishing Ltd
, , Citation N Johnson et al 2019 J. Phys.: Conf. Ser. 1356 012022 DOI 10.1088/1742-6596/1356/1/012022

1742-6596/1356/1/012022

Abstract

The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations, e.g., for design standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system properties and exploit well-established methods and tools for analyzing linear systems. Previous work in this area has focused on the development of the new linearization functionality of the open-source engineering tool OpenFAST for floating offshore wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly. This paper focuses on the verification of this new linearization functionality, which is carried out by comparing results to previous stable versions of FAST. A nonlinear time-domain simulation for a floating offshore platform is also compared to the time-domain response of the linearized state-space model. The linearized results show good alignment between OpenFAST and previous versions of FAST, as well as with the time-domain simulations, thereby showing the accuracy of the new features in OpenFAST.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/1356/1/012022