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Abstract. A program that implements a Markov inhomogeneous monotonous random search 

algorithm of an extremum is presented. This program allows to solve a fairly wide class of 

problems of finding the global extremum of an objective function with a high accuracy. 

1. Introduction 

Let the objective function 𝑓: ℝ𝑑 ↦ ℝ take the minimum value at a single point 𝑥∗. Consider the problem 

of finding the global minimizer 𝑥∗ of this function up to a given accuracy 𝜀 > 0. One way of solving this 

problem is to use random search algorithms (see [1–16]). Such algorithms have long been successfully 

used for solving difficult optimization problems. Theoretical studies of the convergence rate of some 

Markov search algorithms are represented in [3, 10–15]. This paper is a continuation of [11, 12, 15] and 

is devoted to a computer program that implements one of the algorithms for the inhomogeneous Markov 

monotone search for an extremum. The presented computer program complements the program [16], in 

which one homogeneous random search algorithm was implemented. 

2. Statement of the problem 

As the optimization space we will consider the space 𝑋 = ℝ𝑑 with the metric 

 𝜌∞(𝑥, 𝑦) = max
1≤𝑛≤𝑑

|𝑥𝑛 − 𝑦𝑛|, (1) 

where 𝑥 = (𝑥1, … , 𝑥𝑑) and 𝑦 = (𝑦1, … , 𝑦𝑑). A closed ball of radius r with the center at point x will be 

denoted as 𝐵𝑟(𝑥) = {𝑦 ∈ ℝ𝑑: 𝜌∞(𝑥, 𝑦) ≤ 𝑟}. Let ℱ be Borel 𝜎-algebra on ℝ𝑑. We will denote a 

𝑑-dimensional Lebesgue measure on Borel subsets ℝ𝑑 through 𝜇. 

The metric 𝜌∞ is chosen for the reasons of simplicity of the modeling of the considered random search. 

The fact is that the simulation of the undertaken search is based on the simulation of uniform distributions 

in the balls. The ball in the metric (1) is a cube. It is easy to model a uniform distribution in a 

multidimensional cube, while it is difficult to effectively model a uniform distribution in a “normal” ball 

defined by a Euclidean metric. 

We will use inhomogeneous Markov monotone random search (see [11, 12, 15]) to find the global 

minimizer 𝑥∗ further described with the help of the simulation algorithm. The notation “𝜂 ← 𝑃( ⋅ )” is 

read as: “to get the realization of a random vector 𝜂 with distribution 𝑃”. For numbers and points in the 

optimization space, operations of the form 𝑘 ← 1 and 𝜉 ← 𝑥 denote the simple assignment operations. 

Algorithm 1 

Step 1. 𝜉0 ← 𝑥, 𝑘 ← 1. 
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Step 2. 𝜂𝑘 ← 𝑃𝑘(𝜉𝑘−1, ⋅ ). 

Step 3. If 𝑓(𝜂𝑘) ≤ 𝑓(𝜉𝑘−1), then 𝜉𝑘 ← 𝜂𝑘, otherwise 𝜉𝑘 ← 𝜉𝑘−1. 

Step 4. If 𝑘 = 𝑁, then finish the algorithm. 

Step 5. 𝑘 ← 𝑘 + 1 and go to Step 2. 

Here x is the starting point of search, 𝑁 is the number of search steps, 𝑃𝑘(𝑥, ⋅ ) — Markov transition 

functions (see [11, 12, 15]).  

The first step of algorithm 1 initializes a random search. Point x becomes the starting point of the 

search (operator 𝜉0 ← 𝑥), and the number of the next step of the search 𝑘 is equal to one (operator 𝑘 ←
1). 

At the second step of algorithm 1 we get a new “trial” point 𝜂𝑘 in the optimization space. We choose 

the new “trial” point randomly using the distribution 𝑃𝑘(𝜉𝑘−1, ⋅ ). The distribution 𝑃𝑘(𝜉𝑘−1, ⋅ ) depends 

on the number of the search step 𝑘  and location of the “old” search point 𝜉𝑘−1. This dependency improves 

the efficiency of random search. The transition function 𝑃𝑘(𝑥, ⋅ ) will be called trial transition function. 

The [16] considered the search, the trial transition functions of which did not depend explicitly on the step 

number 𝑘 (i.e. had the form 𝑃𝑘(𝑥, ⋅ ) = 𝑃(𝑥, ⋅ )). This search is called homogeneous. Here we will 

consider an inhomogeneous search whose trial transition functions 𝑃𝑘(𝑥, ⋅ ) explicitly depend on the 

number of the step k. Due to the inhomogeneity we can improve the efficiency of the search. But this 

dependence complicates the choice of search parameters and the “right” choice of search parameters is a 

difficult task (see, for example, [7]). 

At the third step of algorithm 1, we compare the new test point 𝜂𝑘 with the old search point 𝜉𝑘−1. If 

the new test point 𝜂𝑘 is not worse than the old search point 𝜉𝑘−1 (i.e. if the inequality 𝑓(𝜂𝑘) ≤ 𝑓(𝜉𝑘−1) 

is satisfied), the search moves to the new point 𝜂𝑘 (the operator 𝜉𝑘 ← 𝜂𝑘 is executed), otherwise the search 

remains at the old point (the operator 𝜉𝑘 ← 𝜉𝑘−1 is executed). 

At the fourth step of algorithm 1, we check the condition of stopping the search. In this case, a very 

simple criterion for stopping the search is selected. The search simply takes a predetermined number of 

steps 𝑁 and stops after that. 

Let us note, that the second, the third, the fourth and the fifth steps of the algorithm 1 repeats cyclically 

for 𝑁 times. The first step of algorithm 1 is performed only once. 

Let us also note that the introduced random search is monotonous, it means that the inequality 𝑓(𝜉𝑘) ≤
𝑓(𝜉𝑘−1) is held for all 𝑘 ≥ 1.  

3. The choice of transition functions of the random search 

The key question of choice for the type of search under study is the choice of the type of the trial transition 

functions 𝑃𝑘(𝑥, ⋅ ). When choosing transition functions two criteria are typically used. First, the search 

should be quite effective (it should not require too many steps to solve the problem). Moreover, the 

simulation of the distribution 𝑃𝑘(𝑥, ⋅ ) should be simple enough. 

In [16], a homogeneous search was considered, its trial transition functions did not depend explicitly 

on the number of the step 𝑘 (i.e. had the form 𝑃𝑘(𝑥, ⋅ ) = 𝑃(𝑥, ⋅ )). So there we had to choose one 

transition function. Here we need to select 𝑁 different transition functions, where 𝑁 is the number of 

search steps. It is clear that this greatly complicates the task. In addition, for a homogeneous search in 

[13], estimates of labor intensity were obtained and studied. These results were used to select a trial 

transition function for homogeneous search. Unfortunately, there are no such general theoretical results 

for inhomogeneous search. 

We consider a random search for algorithm 1 whose trial transition functions 𝑃𝑘(𝑥, ⋅ ) have symmetric 

densities of the form 

 𝑝𝑘(𝑥, 𝑦) = 𝑔𝑘(𝜌∞(𝑥, 𝑦)), (2) 

where 𝜌∞ — metric, аnd 𝑔𝑘 — non-increasing nonnegative functions defined on the half-axis (0, +∞). 

Let 𝒫 be the set of all transition functions with symmetric densities of the form (2). For 𝑃, 𝑄 ∈ 𝒫 let 

consider that 
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 𝜆(𝑃, 𝑄) = sup
𝑥∈𝑋

sup
𝐴∈ℱ

|𝑃(𝑥, 𝐴) − 𝑄(𝑥, 𝐴)|. (3) 

We will consider the set 𝒫 as a metric space with metric (3). 

The simplest of such distributions with symmetric densities of the form (2) is the uniform distribution 

𝑈𝑎(𝑥, ⋅ ) in the ball 𝐵𝑎(𝑥) of radius 𝑎 > 0 with the center at the point 𝑥 ∈ 𝑋, 

 𝑈𝑎(𝑥, ⋅ ) = 𝜇( ⋅ ∩ 𝐵𝑎(𝑥)) 𝜇(𝐵𝑎(𝑥))⁄ . (4) 

Through 𝑈𝑎 we will denote the transition function corresponding to the family of distributions 

𝑈𝑎(𝑥, ⋅ ), 𝑥 ∈ 𝑋. Let us consider that 𝒰 = {𝑈𝑎:  𝑎 > 0}. It is clear that 𝒰 ⊂ 𝒫. It turns out that 𝒫 =
𝒵(𝒰), where 𝒵(𝒰) is the closure in the metric (3) of the set of all possible convex linear combinations 

of transition functions from 𝒰 (see [12]). 

The search of algorithm 1, trial transition functions which belong to the set 𝒫, will be called the 

inhomogeneous Markov monotone symmetric random search. 

Let us consider the inhomogeneous Markov monotone symmetric random search with starting point 

𝑥 ∈ 𝑋 and trial transition functions 𝑃𝑘 ∈ 𝒫. We use the random search for finding some measurable subset 

𝐴 of the set 𝑋 = ℝ𝑑. For example, we can take 𝐴 = 𝐵𝜀(𝑥∗) or 𝐴 = {𝑥 ∈ 𝑋:  𝑓(𝑥) ≤ 𝑓(𝑥∗) + 𝜀} when 𝜀 >
0. In this case we are limited by a fixed number 𝑁 of random search steps and fixed transition functions 

𝑃1, … , 𝑃𝑁. Note that although the set 𝐴 may not be related to the objective function 𝑓, the search itself 

depends on 𝑓. 

Let us pose the question: is it possible to replace the transition functions 𝑃1, … , 𝑃𝑁 from the set 𝒫 with 

some “simple” transition functions so that for a new search (which still starts at a point 𝑥 ∈ 𝑋) the 

probability 𝑃𝑥(𝜉𝑁 ∈ 𝐴) to be at the step 𝑁 in the set 𝐴 does not decrease? It turns out (see [12]) that it is 

possible if the uniform distributions in balls of various radii with various centers are considered as 

“simple” transition functions. As it was already mentioned, in the space 𝑋 = ℝ𝑑 with the metric 𝜌∞ such 

distributions are easily modeled. 

Emphasizing the dependence of the probability 𝑃𝑥(𝜉𝑁 ∈ 𝐴) from the transition functions 𝑃1, … , 𝑃𝑁 

from the set 𝒫 we will denote it 𝑃𝑥(𝜉𝑁 ∈ 𝐴; 𝑃1. … , 𝑃𝑁) .The following statement is true 

Theorem 1. Let the objective function 𝑓, the set 𝐴, the number of search steps 𝑁 and the starting point 

of the search 𝑥 ∈ 𝑋 be fixed. Then 

 
sup{𝑃𝑥(𝜉𝑁 ∈ 𝐴; 𝑃1, … , 𝑃𝑁): 𝑃1, … , 𝑃𝑁 ∈ 𝒫} =

sup{𝑃𝑥(𝜉𝑁 ∈ 𝐴; 𝑃1, … , 𝑃𝑁): 𝑃1, … , 𝑃𝑁 ∈ 𝒰} .
 (5) 

Under additional constraints the existence of transition functions 𝑃1, … , 𝑃𝑁 ∈ 𝒰 that realize the 

supremum in the right side (5) is proved in [12]. 

Theorem 1 proves that the optimal random search has a simple structure. To find the optimal Markov 

monotone symmetric random search, we do not need to search for a set of functions (a set defined by the 

formula (2) of densities), but rather to find a set of numbers (radii of balls for uniform distributions). 

However, obtaining optimal search parameters is a complex task. One of the main difficulties is that these 

parameters depend on the objective function and when solving practical problems they have to be chosen 

taking into account a priori information about the behavior of the objective function that is difficult to 

formalize. It is clear that such problems of optimal choice of parameters are difficult not only for the 

solution, but even for the formulation. Therefore, there are no theoretical results on the optimal choice of 

ball radii. 

Taking into account the presented results, we will use the inhomogeneous Markov monotone 

symmetric random search whose trial transition functions are uniform distributions in balls (given by the 

formula (4)). 

To build the search, we need to choose the radii of the balls for the uniform distributions given by the 

formula (4). To select these radii, we will use heuristic considerations. Consider the homogeneous 

monotonous random search, trial transition function 𝑃(𝑥, ⋅ ) which minimizes studied in [13] estimate of 

the complexity of random search when optimizing a simple objective function. Such search has several 
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advantages. This search (for non-degenerate objective functions) provides a good order of dependence of 

the obtained labor intensity estimates from 𝜀 (see [3, 13]). And given examples of using the program [16] 

show acceptable efficiency in the optimization of not too complex objective functions. The trial transition 

function 𝑃(𝑥, ⋅ ) of such a homogeneous search is close to the mixture with the same probabilities of 

uniform distributions in balls whose radii form a geometric progression. The radii of this geometric 

progression run through the values from the assumed accuracy of the initial approximation (the distance 

from the initial search point to the minimum point) to the required accuracy of the solution of the problem 

when approximating by argument. Therefore, in the inhomogeneous search that is under study, we will 

use uniform distributions in balls whose radii form a geometric progression. Only, in contrast to the 

homogeneous search, in the inhomogeneous search we will not use a mixture of uniform distributions in 

the balls, and we will use these uniform distributions consistently. We start naturally with the largest 

radius and finish with the smallest. 

In addition, as the number of search steps should be large enough so that we don’t have to change the 

radius of the ball too often, we will split the whole search into stages, and we will change the radius of 

the ball only after the completion of the current stage. Thus, the trial transition functions will be constant 

for all the steps of one stage. 

Theoretical results on the choice of parameters of the considered inhomogeneous search are presented 

in [11, 15]. Let 𝑁(𝜀, 𝛾) be the number of search steps at which the achievement of the neighborhood of 

the minimum point is guaranteed with probability 𝛾 (more precisely, when 𝑁 = 𝑁(𝜀, 𝛾) the inequality 

𝑃𝑥(𝜉𝑁 ∈ 𝐵𝜀(𝑥∗)) ≥ 𝛾 is fulfilled). In [15] a method for selecting search parameters (radii 𝑎1, … , 𝑎𝑁) is 

described in which 𝑁(𝜀, 𝛾) = 𝑂(| ln 𝜀| × ln | ln 𝜀|) is performed for a non-degenerate objective function. 

In [14] it is shown that the inequality 𝑁(𝜀, 𝛾) ≥ 𝛾(ln(𝜌(𝑥, 𝑥∗) 𝜀⁄ ) + 2) is true, where 𝑥 is the initial point 

of the search, for any Markov symmetric random search of algorithm 1, whose trial transition functions 

have densities of the form (2). Therefore, we can assume that the search described in [15] has a good order 

of dependency of 𝑁(𝜀, 𝛾) from 𝜀. 

Due to everything stated in this section, we choose to implement the inhomogeneous Markov 

monotone symmetric random search whose trial transition functions are uniform distributions in balls. 

The whole search will be divided into stages and trial transition functions will be constant for all the steps 

of one stage. We will change the radius of the balls only after the completion of the current stage of the 

search and these radii form a geometric progression. 

4. Random search simulation  

In this section we present a simulation algorithm chosen to implement an inhomogeneous Markov 

monotone random search. The presented search has only four parameters. The parameters that define the 

range of variation of the radii of the balls are positive numbers 𝜈 and Γ for which inequalities 0 < 𝜈 ≤ Γ  
must be performed. The third parameter 𝑁 is the number of search steps. The fourth parameter is 𝑚— the 

number of steps at the search stage (trial transient functions are constant for all the steps of one stage). 

Parameters 𝑚 and 𝑁 are natural numbers that satisfy the inequalities 1 ≤ 𝑚 ≤ 𝑁. 

We will calculate two auxiliary parameters. The number of stages of the search is 𝜏 = ⌈𝑁 𝑚⁄ ⌉. The 

radii of the balls at the search stages form a geometric progression with the denominator of the progression 

𝑞 ∈ (0,1], where 

𝑞 = {
1, if 𝜏 = 1,

(𝜈 Γ⁄ )1 (𝜏−1)⁄ , if 𝜏 > 1.
 

Now we write down the algorithm chosen for implementation inhomogeneous Markov monotone 

symmetric random search 𝜉0, … , 𝜉𝑁. 

Algorithm 2 

Step 1. 𝜉0 ← 𝑥, 𝑘 ← 1, 𝑎 ← Γ. 

Step 2. 𝜂𝑘 ← 𝑈𝑎(𝜉𝑘−1, ⋅ ). 

Step 3. If 𝑓(𝜂𝑘) ≤ 𝑓(𝜉𝑘−1), then 𝜉𝑘 ← 𝜂𝑘, otherwise 𝜉𝑘 ← 𝜉𝑘−1. 
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Step 4. If 𝑘 = 𝑁, then finish the algorithm. 

Step 5. If 𝑘 mod 𝑚 = 0, then 𝑎 ← 𝑎 ∗ 𝑞.  

Step 6. 𝑘 ← 𝑘 + 1 and go to the Step 2. 

Here x is the starting point of the search, 𝑘— the number of the search step, 𝑁— the number of search 

steps. Through 𝑈𝑎(𝜉𝑘−1, ⋅ ) denoted the uniform distribution in the ball 𝐵𝑎(𝜉𝑘−1)  of radius 𝑎 > 0 

centered at the point 𝜉𝑘−1 given by the formula (4). The radius 𝑎 changes after the end of the search stage, 

where 𝑚— the number of steps in the search stage, and through 𝑘 mod 𝑚 the remainder of the division 

𝑘 by 𝑚 is denoted. 

At the second step of algorithm 2 we obtain a new “trial” point 𝜂𝑘 in the optimization space using a 

uniform distribution 𝑈𝑎(𝜉𝑘−1, ⋅ ). 

At the third step of algorithm 2 we compare the new trial point 𝜂𝑘 with the old search point 𝜉𝑘−1. If 

the new trial point 𝜂𝑘 is not worse than the old search point 𝜉𝑘−1 (i.e. if the inequality 𝑓(𝜂𝑘) ≤ 𝑓(𝜉𝑘−1) 

is satisfied) the search moves to the new point (the operator 𝜉𝑘 ← 𝜂𝑘 is executed), otherwise the search 

remains at the old point (the operator 𝜉𝑘 ← 𝜉𝑘−1 is executed). 

At the fourth step of algorithm 2, we check the condition for stopping the search. In this case, the 

search stops after performing a predetermined number of steps 𝑁, i.e. under the condition 𝑘 = 𝑁. If the 

search continues (i.e., if 𝑘 < 𝑁), then at the fifth and sixth steps of algorithm 2 we recalculate the values 

of the search parameters and return to the second step of algorithm 2. 

Since in the space 𝑋 = ℝ𝑑 with the metric 𝜌∞ it is very simple to model the uniform 

distribution 𝑈𝑎(𝜉𝑘−1, ⋅ ), and in general, the simulation algorithm 2 is very easy to program. The 

presented simulation algorithm is only slightly more complicated than the algorithm for modeling a 

simplest random search (the so-called “blind search” [3, 5]), which uses a uniform distribution in a pre-

fixed area of optimization space. Simulation algorithm 2 is simpler than most of the used random search 

simulation algorithms [3, 5–7]. 

5. Program description 

The program is written in language C# in the integrated development environment Microsoft Visual 

Studio Professional 2010. The program has a graphical user interface written with Windows Forms. You 

can download the program at www.novsu.ru/doc/study/tas1 from the “Random_search” folder. The 

program is also available as an executable file MarkovMonotonousSearch.exe and in the form of a project 

that contains the source code of the program that allows the user to edit the program at own discretion. 

Microsoft. NET Framework 4 is required to run the executable program file. Usually it is already 

installed on the computer, but if necessary it can be downloaded from the Microsoft website. To edit the 

project, you need to install the Microsoft Visual Studio development environment. This development 

environment can be used free of charge, and therefore this development environment can serve as a 

convenient tool for scientific calculations. 

For calculations the program uses a numeric type double providing an accuracy of 15-16 signs. Note 

that this numerical format limits the possible accuracy of the solution of the problem. Reasoning a bit 

simplistically, we will get the following conclusions. If the objective function behaves approximately as 

a quadratic function in the neighborhood of the global minimum then with the accuracy of the 

approximation by the argument of the order 10−8, we obtain the accuracy of the approximation by the 

function value of the order 10−16. If the minimum value of the objective function belongs to the interval 

(1, 10), the numeric type double, providing an accuracy of 15-16 signs, will not allow to calculate the 

value of the function with an accuracy higher 10−16. Thereby, the typical accuracy of the solution of the 

task will be of the order of 10−7 in the approximation of the argument and of the order of 10−14 in the 

approximation of the function value. This accuracy is usually enough from the practical point of view. 

And such accuracy of the solution of the problem can be obtained by using the considered random search 

program in the solution of not too complex optimization problems. Of course, if the minimum value of 

the objective function is zero and the minimum point is also zero then the problem can be solved with 

much higher accuracy. 



MMPAM’2019

IOP Conf. Series: Journal of Physics: Conf. Series 1352 (2019) 012054

IOP Publishing

doi:10.1088/1742-6596/1352/1/012054

6

To apply a search, you must specify an objective function, search parameters and a starting search 

point. The search endpoint (which approximates the global minimum) and the value of the objective 

function at the search endpoint will be the results of the search. 

The search parameters and the starting search point can be easily set in the main window of the 

program. 

It is more difficult to set the objective function. The objective function can be set in two ways. First, 

you can write the function code directly in the program code (in C#). This method is described in more 

detail in [16]. When writing code that calculates the value of the objective function, as a rule, minimal 

information about some programming language such as C, C++, C#, Java is sufficient. 

Secondly, the objective function can be set in the search program itself (without using Microsoft Visual 

Studio). To do this click “Set formula”, in the opened dialog box select “Use formula”, specify the 

dimension of the optimization space and write a formula that defines the objective function. The rules of 

the formula writing are typical for mathematical programs and are given in [16]. 

The dimension of the optimization space is specified when the function is set. 

In the program you can specify the output formats of the objective function value and point coordinates 

(see [16]). 

You can write comments to the problem to be solved. Comments are recorded in the text format and 

saved in a file along with parameters and search results. 

The program uses a pseudo-random number generator to perform the search. It can be initialized with 

either a value that depends on the system time of the computer or a specified value. 

The program can save data in XML format and export key search characteristics in text format. 

Let us note that the use of the old development environment Microsoft Visual Studio 2010 when 

writing a program allows even users of computers with the operating system Windows XP to work with 

the project. 

6. Search parameters selection 

It is important to note that the choice of the search parameters can have a major impact on the effectiveness 

of the random search method [3, 5, 7]. However, many search algorithms contain a large number of 

heuristic parameters, and the user of such an algorithm can be very difficult to find “good” parameter 

values that are suitable for the objective function. Here is a quote from [7] relating to the method of very 

fast annealing proposed by L. Ingber: “One of the disadvantages of this method is that due to the large 

number of parameters, it sometimes takes several months to set it up well for a specific task”. At the same 

time, with proper selection of parameters, the method of very fast annealing can show very good results 

[6, 7]. 

The presented search has only four parameters. The parameters defining the range of changes of the 

radii of the balls are positive numbers 𝜈 and Γ for which inequalities 0 < 𝜈 ≤ Γ must be satisfied. The 

third parameter is 𝑁— the number of search steps. The fourth parameter is 𝑚— the number of steps at 

the search stage (trial transition functions are constant for all steps of one stage). 

The value 𝜈 can be chosen close to the required accuracy of the solution of the problem when 

approximating the argument. The value Γ can be chosen close to either the expected accuracy of the initial 

approximation (the distance from the initial search point to the minimum point) or to the diameter of the 

study area in the optimization space. 

The number of search steps 𝑁 is desirable to be large enough. When solving a single problem, you 

can, for example, perform a billion of search steps, even if the task is simple enough and it can be solved 

much faster. Modern personal computers can easily perform similar volumes of calculations, at least for 

not too complex objective functions. However, for such volumes of calculations the code of the objective 

function must be set programmatically in the C# programming language. 

The parameter 𝑚 (the number of steps at the search stage) can be set so that it is not necessary to 

change the ball radius too often. All the numerical examples in the next section use the value 𝑚 = 10. 

In addition to the four search parameters, you need to select the starting point of the search. It 

is obvious that it is better to locate the starting point closer to the point of global extremum. 
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The proposed search algorithm is largely free from the insurmountable difficulties of choosing 

parameters. In particular, in the numerical examples of the next section, a minimal selection of 

parameters was carried out, consisting literally of several attempts to launch a program with 

different values of parameters. 

7. Examples of the program use 

Here are some examples of using the program to solve optimization problems. A personal computer with 

Intel Core i5-4460S processor was used for calculations. 

7.1. Example 1 

Let's use an example from [5]. Here 𝑋 = ℝ2, 𝑥 = (𝑥1, 𝑥2),  

𝑓(𝑥) = 𝑓(𝑥1, 𝑥2) = 𝑥1
4 + 𝑥1

2 + 𝑥1𝑥2 + 𝑥2
2. 

The function 𝑓 takes the minimum value at a single point 𝑥∗ = (0, 0) and 𝑓(𝑥∗) = 0. The starting point 

of the search is 𝑥 = (1, 1) and 𝑓(𝑥) = 4. The number of search steps 𝑁 here is 104.  

Algorithm B of the book [5] gets the minimum value of the objective function 2.7 × 10−6. Algorithm 

B corresponds to the search for algorithm 1 using the normal probability distribution as a transition 

function. 

Algorithm C of the book [5] gets the minimum value of the objective function 2.5 × 10−7. Algorithm 

C also uses the normal probability distribution as a transition function, but represents a more complex 

search variant, in which the displacement made in the previous step of the algorithm is taken into account 

when constructing a new search point. 

The homogeneous search algorithm of the article [16] gets the minimum value of the objective function 

9.9 × 10−49. 

Algorithm 2 of this work with parameters 𝜈 = 10−165, Γ = 1 and 𝑚 = 10 gets the minimum value of 

the objective function equal to zero (i.e. less than the value 5 × 10−324 that determines the range of values 

of the type double of the C# programming language) and the minimum point (−5.0 × 10−163, 1.3 ×
10−163). We note that in this case the maximum accuracy with which you can perform calculations in C# 

using the numeric format double is achieved (due to the fact that it is impossible to calculate the value of 

the objective function more accurately). 

Algorithm 1 of homogeneous search [16] was required to take 106 steps to obtain the zero value of 

the objective function. 

In this example, the search for algorithm 2 turned out to be much more accurate than the algorithms B 

and C of the book [5] and algorithm 1 of the article [16]. 

7.2. Example 2 

The optimization space is 𝑋 = [−8, 8]2, 𝑥 = (𝑥1, 𝑥2),  

𝑓(𝑥) = 𝑓(𝑥1, 𝑥2) =
1

2
((𝑥1

4 − 16𝑥1
2 + 5𝑥1) + (𝑥2

4 − 16𝑥2
2 + 5𝑥2)). 

The function 𝑓 has four local minima, one of them is global. The starting point of the search is 𝑥 =
(4.0, 6.4) and 𝑓(𝑥) = 537.18. Search algorithm 2 with the parameters 𝜈 = 10−9, Γ = 10, 𝑚 = 10 and 

𝑁 = 20000 finds the minimum value of the objective function −78.3323314075428 and the minimum 

point (−2.903534, −2.903534). We note, that here we have reached the limit of accuracy with which 

you can perform calculations in C# using the numeric format double (because of the fact that it is 

impossible to accurately calculate the value of the objective function). 

The obtained results are close to the results of a homogeneous search of the article [16]. 

7.3. Example 3 

The space is 𝑋 = [−4, 4]10, 𝑥 = (𝑥1, 𝑥2, … , 𝑥10),  
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𝑓(𝑥) = 𝑓(𝑥1, 𝑥2, … , 𝑥10) = ∑(100(𝑥2𝑛 − 𝑥2𝑛−1
2 )2 + (1 − 𝑥2𝑛−1)2)

5

𝑛=1

. 

The 𝑓 function is a well-known Rosenbrock test function used for local optimization methods. The 

function 𝑓 takes the minimum value 𝑓(𝑥∗) = 0 at the point 𝑥∗ = (1, 1, … , 1). The starting point of the 

search is 𝑥 = (−1.2, 1, −1.2, 1, … , 1) and 𝑓(𝑥) = 121. Search algorithm 2 with the parameters 𝜈 =
10−17, Γ = 4, 𝑚 = 10 and 𝑁 = 107 finds the minimum value of the objective function 3.7 × 10−29. The 

run time of the search was 1.5 seconds. 

The obtained results are close to the results of a homogeneous search for algorithm 1 of [16]. 

7.4. Example 4 

Let us consider an example with a very simple objective function, but in the optimization space of a very 

large dimension for the random search methods. Here is the space 𝑋 = ℝ1000, 𝑥 = (𝑥1, 𝑥2, … , 𝑥1000), 

𝑓(𝑥) = ∑ 𝑥𝑛
21000

𝑛=1 . The function 𝑓 takes the minimum value 𝑓(𝑥∗) = 0 at a single point. The starting point 

of the search is 𝑥 = (1, 1, … , 1). Search algorithm 2 with the parameters 𝜈 = 10−80, Γ = 10, 𝑚 = 10 

and 𝑁 = 106 finds the minimum value of the objective function 1.2 × 10−155. The run time of the search 

was 13 seconds. 

A homogeneous search of the article [16] obtained the minimum value of the objective function 

1.6 × 10−14 when 𝑁 = 106. The search run time was 13 seconds.  

In this example, the search for algorithm 2 turned out to be much more accurate than the search for 

algorithm 1 of article [16]. 

8. Conclusion 

The obtained results show that the presented random search program can be successfully used to solve 

optimization problems. The program itself is easy to use and the choice of search parameters is not a 

difficult task. At the same time, the program allows you to solve problems with the utmost precision that 

can be obtained using the double number format of the C# programming language. 
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