
Journal of Physics: Conference
Series

PAPER • OPEN ACCESS

On the program implementation of one
inhomogeneous Markov algorithm of search for
extremum
To cite this article: A S Tikhomirov 2019 J. Phys.: Conf. Ser. 1352 012054

View the article online for updates and enhancements.

You may also like
Peer Review Statement-

Peer review statement-

Peer review statement-

This content was downloaded from IP address 3.134.118.95 on 07/05/2024 at 20:17

https://doi.org/10.1088/1742-6596/1352/1/012054
https://iopscience.iop.org/article/10.1088/1755-1315/395/1/011002
https://iopscience.iop.org/article/10.1088/1742-6596/1572/1/011002
https://iopscience.iop.org/article/10.1088/1757-899X/882/1/011003
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsvgA3oXkDbQN2ZUWzW7PsNokNqX4AHkGi-ztoMKEOGviO-Mwt8zlPr4eqLC58c_4dtkvUGNroz3Yp3Rf9O9KzPL2JTq3qKPuie1Up8UcDBytti-HK9QQ0gDOnk5MTCbL-RKBBySRMShN87UvkLFbcSLV6xeP93DUzI0AmxNbuvECXQuD-e0_8EgZOZ2IaE0eOisNyDikfS9lQ0IogveMLbawwmFle1qV6ebO3A9OpShBJ1WHClwheQLFEgJM9KSl15doYZHacGd0qnL1w72DUDtr7avcTpDeH3bchwEJuhKweeMbqa5HkLbNgl8CyS_H98X1m1znlBVXxhHuJn6Y-TaWWhT9A&sig=Cg0ArKJSzEuGv5_CL8II&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

MMPAM’2019

IOP Conf. Series: Journal of Physics: Conf. Series 1352 (2019) 012054

IOP Publishing

doi:10.1088/1742-6596/1352/1/012054

1

On the program implementation of one inhomogeneous Markov

algorithm of search for extremum

A S Tikhomirov

Yaroslav-the-Wise Novgorod State University, ul. B. St. Petersburgskaya, 41

173003 Veliky Novgorod, Russia

E-mail: Alexey.Tikhomirov@novsu.ru

Abstract. A program that implements a Markov inhomogeneous monotonous random search

algorithm of an extremum is presented. This program allows to solve a fairly wide class of

problems of finding the global extremum of an objective function with a high accuracy.

1. Introduction

Let the objective function 𝑓: ℝ𝑑 ↦ ℝ take the minimum value at a single point 𝑥∗. Consider the problem

of finding the global minimizer 𝑥∗ of this function up to a given accuracy 𝜀 > 0. One way of solving this

problem is to use random search algorithms (see [1–16]). Such algorithms have long been successfully

used for solving difficult optimization problems. Theoretical studies of the convergence rate of some

Markov search algorithms are represented in [3, 10–15]. This paper is a continuation of [11, 12, 15] and

is devoted to a computer program that implements one of the algorithms for the inhomogeneous Markov

monotone search for an extremum. The presented computer program complements the program [16], in

which one homogeneous random search algorithm was implemented.

2. Statement of the problem

As the optimization space we will consider the space 𝑋 = ℝ𝑑 with the metric

 𝜌∞(𝑥, 𝑦) = max
1≤𝑛≤𝑑

|𝑥𝑛 − 𝑦𝑛|, (1)

where 𝑥 = (𝑥1, … , 𝑥𝑑) and 𝑦 = (𝑦1, … , 𝑦𝑑). A closed ball of radius r with the center at point x will be

denoted as 𝐵𝑟(𝑥) = {𝑦 ∈ ℝ𝑑: 𝜌∞(𝑥, 𝑦) ≤ 𝑟}. Let ℱ be Borel 𝜎-algebra on ℝ𝑑. We will denote a

𝑑-dimensional Lebesgue measure on Borel subsets ℝ𝑑 through 𝜇.

The metric 𝜌∞ is chosen for the reasons of simplicity of the modeling of the considered random search.

The fact is that the simulation of the undertaken search is based on the simulation of uniform distributions

in the balls. The ball in the metric (1) is a cube. It is easy to model a uniform distribution in a

multidimensional cube, while it is difficult to effectively model a uniform distribution in a “normal” ball

defined by a Euclidean metric.

We will use inhomogeneous Markov monotone random search (see [11, 12, 15]) to find the global

minimizer 𝑥∗ further described with the help of the simulation algorithm. The notation “𝜂 ← 𝑃(⋅)” is

read as: “to get the realization of a random vector 𝜂 with distribution 𝑃”. For numbers and points in the

optimization space, operations of the form 𝑘 ← 1 and 𝜉 ← 𝑥 denote the simple assignment operations.

Algorithm 1

Step 1. 𝜉0 ← 𝑥, 𝑘 ← 1.

MMPAM’2019

IOP Conf. Series: Journal of Physics: Conf. Series 1352 (2019) 012054

IOP Publishing

doi:10.1088/1742-6596/1352/1/012054

2

Step 2. 𝜂𝑘 ← 𝑃𝑘(𝜉𝑘−1, ⋅).

Step 3. If 𝑓(𝜂𝑘) ≤ 𝑓(𝜉𝑘−1), then 𝜉𝑘 ← 𝜂𝑘, otherwise 𝜉𝑘 ← 𝜉𝑘−1.

Step 4. If 𝑘 = 𝑁, then finish the algorithm.

Step 5. 𝑘 ← 𝑘 + 1 and go to Step 2.

Here x is the starting point of search, 𝑁 is the number of search steps, 𝑃𝑘(𝑥, ⋅) — Markov transition

functions (see [11, 12, 15]).

The first step of algorithm 1 initializes a random search. Point x becomes the starting point of the

search (operator 𝜉0 ← 𝑥), and the number of the next step of the search 𝑘 is equal to one (operator 𝑘 ←
1).

At the second step of algorithm 1 we get a new “trial” point 𝜂𝑘 in the optimization space. We choose

the new “trial” point randomly using the distribution 𝑃𝑘(𝜉𝑘−1, ⋅). The distribution 𝑃𝑘(𝜉𝑘−1, ⋅) depends

on the number of the search step 𝑘 and location of the “old” search point 𝜉𝑘−1. This dependency improves

the efficiency of random search. The transition function 𝑃𝑘(𝑥, ⋅) will be called trial transition function.

The [16] considered the search, the trial transition functions of which did not depend explicitly on the step

number 𝑘 (i.e. had the form 𝑃𝑘(𝑥, ⋅) = 𝑃(𝑥, ⋅)). This search is called homogeneous. Here we will

consider an inhomogeneous search whose trial transition functions 𝑃𝑘(𝑥, ⋅) explicitly depend on the

number of the step k. Due to the inhomogeneity we can improve the efficiency of the search. But this

dependence complicates the choice of search parameters and the “right” choice of search parameters is a

difficult task (see, for example, [7]).

At the third step of algorithm 1, we compare the new test point 𝜂𝑘 with the old search point 𝜉𝑘−1. If

the new test point 𝜂𝑘 is not worse than the old search point 𝜉𝑘−1 (i.e. if the inequality 𝑓(𝜂𝑘) ≤ 𝑓(𝜉𝑘−1)

is satisfied), the search moves to the new point 𝜂𝑘 (the operator 𝜉𝑘 ← 𝜂𝑘 is executed), otherwise the search

remains at the old point (the operator 𝜉𝑘 ← 𝜉𝑘−1 is executed).

At the fourth step of algorithm 1, we check the condition of stopping the search. In this case, a very

simple criterion for stopping the search is selected. The search simply takes a predetermined number of

steps 𝑁 and stops after that.

Let us note, that the second, the third, the fourth and the fifth steps of the algorithm 1 repeats cyclically

for 𝑁 times. The first step of algorithm 1 is performed only once.

Let us also note that the introduced random search is monotonous, it means that the inequality 𝑓(𝜉𝑘) ≤
𝑓(𝜉𝑘−1) is held for all 𝑘 ≥ 1.

3. The choice of transition functions of the random search

The key question of choice for the type of search under study is the choice of the type of the trial transition

functions 𝑃𝑘(𝑥, ⋅). When choosing transition functions two criteria are typically used. First, the search

should be quite effective (it should not require too many steps to solve the problem). Moreover, the

simulation of the distribution 𝑃𝑘(𝑥, ⋅) should be simple enough.

In [16], a homogeneous search was considered, its trial transition functions did not depend explicitly

on the number of the step 𝑘 (i.e. had the form 𝑃𝑘(𝑥, ⋅) = 𝑃(𝑥, ⋅)). So there we had to choose one

transition function. Here we need to select 𝑁 different transition functions, where 𝑁 is the number of

search steps. It is clear that this greatly complicates the task. In addition, for a homogeneous search in

[13], estimates of labor intensity were obtained and studied. These results were used to select a trial

transition function for homogeneous search. Unfortunately, there are no such general theoretical results

for inhomogeneous search.

We consider a random search for algorithm 1 whose trial transition functions 𝑃𝑘(𝑥, ⋅) have symmetric

densities of the form

 𝑝𝑘(𝑥, 𝑦) = 𝑔𝑘(𝜌∞(𝑥, 𝑦)), (2)

where 𝜌∞ — metric, аnd 𝑔𝑘 — non-increasing nonnegative functions defined on the half-axis (0, +∞).

Let 𝒫 be the set of all transition functions with symmetric densities of the form (2). For 𝑃, 𝑄 ∈ 𝒫 let

consider that

MMPAM’2019

IOP Conf. Series: Journal of Physics: Conf. Series 1352 (2019) 012054

IOP Publishing

doi:10.1088/1742-6596/1352/1/012054

3

 𝜆(𝑃, 𝑄) = sup
𝑥∈𝑋

sup
𝐴∈ℱ

|𝑃(𝑥, 𝐴) − 𝑄(𝑥, 𝐴)|. (3)

We will consider the set 𝒫 as a metric space with metric (3).

The simplest of such distributions with symmetric densities of the form (2) is the uniform distribution

𝑈𝑎(𝑥, ⋅) in the ball 𝐵𝑎(𝑥) of radius 𝑎 > 0 with the center at the point 𝑥 ∈ 𝑋,

 𝑈𝑎(𝑥, ⋅) = 𝜇(⋅ ∩ 𝐵𝑎(𝑥)) 𝜇(𝐵𝑎(𝑥))⁄ . (4)

Through 𝑈𝑎 we will denote the transition function corresponding to the family of distributions

𝑈𝑎(𝑥, ⋅), 𝑥 ∈ 𝑋. Let us consider that 𝒰 = {𝑈𝑎: 𝑎 > 0}. It is clear that 𝒰 ⊂ 𝒫. It turns out that 𝒫 =
𝒵(𝒰), where 𝒵(𝒰) is the closure in the metric (3) of the set of all possible convex linear combinations

of transition functions from 𝒰 (see [12]).

The search of algorithm 1, trial transition functions which belong to the set 𝒫, will be called the

inhomogeneous Markov monotone symmetric random search.

Let us consider the inhomogeneous Markov monotone symmetric random search with starting point

𝑥 ∈ 𝑋 and trial transition functions 𝑃𝑘 ∈ 𝒫. We use the random search for finding some measurable subset

𝐴 of the set 𝑋 = ℝ𝑑. For example, we can take 𝐴 = 𝐵𝜀(𝑥∗) or 𝐴 = {𝑥 ∈ 𝑋: 𝑓(𝑥) ≤ 𝑓(𝑥∗) + 𝜀} when 𝜀 >
0. In this case we are limited by a fixed number 𝑁 of random search steps and fixed transition functions

𝑃1, … , 𝑃𝑁. Note that although the set 𝐴 may not be related to the objective function 𝑓, the search itself

depends on 𝑓.

Let us pose the question: is it possible to replace the transition functions 𝑃1, … , 𝑃𝑁 from the set 𝒫 with

some “simple” transition functions so that for a new search (which still starts at a point 𝑥 ∈ 𝑋) the

probability 𝑃𝑥(𝜉𝑁 ∈ 𝐴) to be at the step 𝑁 in the set 𝐴 does not decrease? It turns out (see [12]) that it is

possible if the uniform distributions in balls of various radii with various centers are considered as

“simple” transition functions. As it was already mentioned, in the space 𝑋 = ℝ𝑑 with the metric 𝜌∞ such

distributions are easily modeled.

Emphasizing the dependence of the probability 𝑃𝑥(𝜉𝑁 ∈ 𝐴) from the transition functions 𝑃1, … , 𝑃𝑁

from the set 𝒫 we will denote it 𝑃𝑥(𝜉𝑁 ∈ 𝐴; 𝑃1. … , 𝑃𝑁) .The following statement is true

Theorem 1. Let the objective function 𝑓, the set 𝐴, the number of search steps 𝑁 and the starting point

of the search 𝑥 ∈ 𝑋 be fixed. Then

sup{𝑃𝑥(𝜉𝑁 ∈ 𝐴; 𝑃1, … , 𝑃𝑁): 𝑃1, … , 𝑃𝑁 ∈ 𝒫} =

sup{𝑃𝑥(𝜉𝑁 ∈ 𝐴; 𝑃1, … , 𝑃𝑁): 𝑃1, … , 𝑃𝑁 ∈ 𝒰} .
 (5)

Under additional constraints the existence of transition functions 𝑃1, … , 𝑃𝑁 ∈ 𝒰 that realize the

supremum in the right side (5) is proved in [12].

Theorem 1 proves that the optimal random search has a simple structure. To find the optimal Markov

monotone symmetric random search, we do not need to search for a set of functions (a set defined by the

formula (2) of densities), but rather to find a set of numbers (radii of balls for uniform distributions).

However, obtaining optimal search parameters is a complex task. One of the main difficulties is that these

parameters depend on the objective function and when solving practical problems they have to be chosen

taking into account a priori information about the behavior of the objective function that is difficult to

formalize. It is clear that such problems of optimal choice of parameters are difficult not only for the

solution, but even for the formulation. Therefore, there are no theoretical results on the optimal choice of

ball radii.

Taking into account the presented results, we will use the inhomogeneous Markov monotone

symmetric random search whose trial transition functions are uniform distributions in balls (given by the

formula (4)).

To build the search, we need to choose the radii of the balls for the uniform distributions given by the

formula (4). To select these radii, we will use heuristic considerations. Consider the homogeneous

monotonous random search, trial transition function 𝑃(𝑥, ⋅) which minimizes studied in [13] estimate of

the complexity of random search when optimizing a simple objective function. Such search has several

MMPAM’2019

IOP Conf. Series: Journal of Physics: Conf. Series 1352 (2019) 012054

IOP Publishing

doi:10.1088/1742-6596/1352/1/012054

4

advantages. This search (for non-degenerate objective functions) provides a good order of dependence of

the obtained labor intensity estimates from 𝜀 (see [3, 13]). And given examples of using the program [16]

show acceptable efficiency in the optimization of not too complex objective functions. The trial transition

function 𝑃(𝑥, ⋅) of such a homogeneous search is close to the mixture with the same probabilities of

uniform distributions in balls whose radii form a geometric progression. The radii of this geometric

progression run through the values from the assumed accuracy of the initial approximation (the distance

from the initial search point to the minimum point) to the required accuracy of the solution of the problem

when approximating by argument. Therefore, in the inhomogeneous search that is under study, we will

use uniform distributions in balls whose radii form a geometric progression. Only, in contrast to the

homogeneous search, in the inhomogeneous search we will not use a mixture of uniform distributions in

the balls, and we will use these uniform distributions consistently. We start naturally with the largest

radius and finish with the smallest.

In addition, as the number of search steps should be large enough so that we don’t have to change the

radius of the ball too often, we will split the whole search into stages, and we will change the radius of

the ball only after the completion of the current stage. Thus, the trial transition functions will be constant

for all the steps of one stage.

Theoretical results on the choice of parameters of the considered inhomogeneous search are presented

in [11, 15]. Let 𝑁(𝜀, 𝛾) be the number of search steps at which the achievement of the neighborhood of

the minimum point is guaranteed with probability 𝛾 (more precisely, when 𝑁 = 𝑁(𝜀, 𝛾) the inequality

𝑃𝑥(𝜉𝑁 ∈ 𝐵𝜀(𝑥∗)) ≥ 𝛾 is fulfilled). In [15] a method for selecting search parameters (radii 𝑎1, … , 𝑎𝑁) is

described in which 𝑁(𝜀, 𝛾) = 𝑂(| ln 𝜀| × ln | ln 𝜀|) is performed for a non-degenerate objective function.

In [14] it is shown that the inequality 𝑁(𝜀, 𝛾) ≥ 𝛾(ln(𝜌(𝑥, 𝑥∗) 𝜀⁄) + 2) is true, where 𝑥 is the initial point

of the search, for any Markov symmetric random search of algorithm 1, whose trial transition functions

have densities of the form (2). Therefore, we can assume that the search described in [15] has a good order

of dependency of 𝑁(𝜀, 𝛾) from 𝜀.

Due to everything stated in this section, we choose to implement the inhomogeneous Markov

monotone symmetric random search whose trial transition functions are uniform distributions in balls.

The whole search will be divided into stages and trial transition functions will be constant for all the steps

of one stage. We will change the radius of the balls only after the completion of the current stage of the

search and these radii form a geometric progression.

4. Random search simulation

In this section we present a simulation algorithm chosen to implement an inhomogeneous Markov

monotone random search. The presented search has only four parameters. The parameters that define the

range of variation of the radii of the balls are positive numbers 𝜈 and Γ for which inequalities 0 < 𝜈 ≤ Γ
must be performed. The third parameter 𝑁 is the number of search steps. The fourth parameter is 𝑚— the

number of steps at the search stage (trial transient functions are constant for all the steps of one stage).

Parameters 𝑚 and 𝑁 are natural numbers that satisfy the inequalities 1 ≤ 𝑚 ≤ 𝑁.

We will calculate two auxiliary parameters. The number of stages of the search is 𝜏 = ⌈𝑁 𝑚⁄ ⌉. The

radii of the balls at the search stages form a geometric progression with the denominator of the progression

𝑞 ∈ (0,1], where

𝑞 = {
1, if 𝜏 = 1,

(𝜈 Γ⁄)1 (𝜏−1)⁄ , if 𝜏 > 1.

Now we write down the algorithm chosen for implementation inhomogeneous Markov monotone

symmetric random search 𝜉0, … , 𝜉𝑁.

Algorithm 2

Step 1. 𝜉0 ← 𝑥, 𝑘 ← 1, 𝑎 ← Γ.

Step 2. 𝜂𝑘 ← 𝑈𝑎(𝜉𝑘−1, ⋅).

Step 3. If 𝑓(𝜂𝑘) ≤ 𝑓(𝜉𝑘−1), then 𝜉𝑘 ← 𝜂𝑘, otherwise 𝜉𝑘 ← 𝜉𝑘−1.

MMPAM’2019

IOP Conf. Series: Journal of Physics: Conf. Series 1352 (2019) 012054

IOP Publishing

doi:10.1088/1742-6596/1352/1/012054

5

Step 4. If 𝑘 = 𝑁, then finish the algorithm.

Step 5. If 𝑘 mod 𝑚 = 0, then 𝑎 ← 𝑎 ∗ 𝑞.

Step 6. 𝑘 ← 𝑘 + 1 and go to the Step 2.

Here x is the starting point of the search, 𝑘— the number of the search step, 𝑁— the number of search

steps. Through 𝑈𝑎(𝜉𝑘−1, ⋅) denoted the uniform distribution in the ball 𝐵𝑎(𝜉𝑘−1) of radius 𝑎 > 0

centered at the point 𝜉𝑘−1 given by the formula (4). The radius 𝑎 changes after the end of the search stage,

where 𝑚— the number of steps in the search stage, and through 𝑘 mod 𝑚 the remainder of the division

𝑘 by 𝑚 is denoted.

At the second step of algorithm 2 we obtain a new “trial” point 𝜂𝑘 in the optimization space using a

uniform distribution 𝑈𝑎(𝜉𝑘−1, ⋅).

At the third step of algorithm 2 we compare the new trial point 𝜂𝑘 with the old search point 𝜉𝑘−1. If

the new trial point 𝜂𝑘 is not worse than the old search point 𝜉𝑘−1 (i.e. if the inequality 𝑓(𝜂𝑘) ≤ 𝑓(𝜉𝑘−1)

is satisfied) the search moves to the new point (the operator 𝜉𝑘 ← 𝜂𝑘 is executed), otherwise the search

remains at the old point (the operator 𝜉𝑘 ← 𝜉𝑘−1 is executed).

At the fourth step of algorithm 2, we check the condition for stopping the search. In this case, the

search stops after performing a predetermined number of steps 𝑁, i.e. under the condition 𝑘 = 𝑁. If the

search continues (i.e., if 𝑘 < 𝑁), then at the fifth and sixth steps of algorithm 2 we recalculate the values

of the search parameters and return to the second step of algorithm 2.

Since in the space 𝑋 = ℝ𝑑 with the metric 𝜌∞ it is very simple to model the uniform

distribution 𝑈𝑎(𝜉𝑘−1, ⋅), and in general, the simulation algorithm 2 is very easy to program. The

presented simulation algorithm is only slightly more complicated than the algorithm for modeling a

simplest random search (the so-called “blind search” [3, 5]), which uses a uniform distribution in a pre-

fixed area of optimization space. Simulation algorithm 2 is simpler than most of the used random search

simulation algorithms [3, 5–7].

5. Program description

The program is written in language C# in the integrated development environment Microsoft Visual

Studio Professional 2010. The program has a graphical user interface written with Windows Forms. You

can download the program at www.novsu.ru/doc/study/tas1 from the “Random_search” folder. The

program is also available as an executable file MarkovMonotonousSearch.exe and in the form of a project

that contains the source code of the program that allows the user to edit the program at own discretion.

Microsoft. NET Framework 4 is required to run the executable program file. Usually it is already

installed on the computer, but if necessary it can be downloaded from the Microsoft website. To edit the

project, you need to install the Microsoft Visual Studio development environment. This development

environment can be used free of charge, and therefore this development environment can serve as a

convenient tool for scientific calculations.

For calculations the program uses a numeric type double providing an accuracy of 15-16 signs. Note

that this numerical format limits the possible accuracy of the solution of the problem. Reasoning a bit

simplistically, we will get the following conclusions. If the objective function behaves approximately as

a quadratic function in the neighborhood of the global minimum then with the accuracy of the

approximation by the argument of the order 10−8, we obtain the accuracy of the approximation by the

function value of the order 10−16. If the minimum value of the objective function belongs to the interval

(1, 10), the numeric type double, providing an accuracy of 15-16 signs, will not allow to calculate the

value of the function with an accuracy higher 10−16. Thereby, the typical accuracy of the solution of the

task will be of the order of 10−7 in the approximation of the argument and of the order of 10−14 in the

approximation of the function value. This accuracy is usually enough from the practical point of view.

And such accuracy of the solution of the problem can be obtained by using the considered random search

program in the solution of not too complex optimization problems. Of course, if the minimum value of

the objective function is zero and the minimum point is also zero then the problem can be solved with

much higher accuracy.

MMPAM’2019

IOP Conf. Series: Journal of Physics: Conf. Series 1352 (2019) 012054

IOP Publishing

doi:10.1088/1742-6596/1352/1/012054

6

To apply a search, you must specify an objective function, search parameters and a starting search

point. The search endpoint (which approximates the global minimum) and the value of the objective

function at the search endpoint will be the results of the search.

The search parameters and the starting search point can be easily set in the main window of the

program.

It is more difficult to set the objective function. The objective function can be set in two ways. First,

you can write the function code directly in the program code (in C#). This method is described in more

detail in [16]. When writing code that calculates the value of the objective function, as a rule, minimal

information about some programming language such as C, C++, C#, Java is sufficient.

Secondly, the objective function can be set in the search program itself (without using Microsoft Visual

Studio). To do this click “Set formula”, in the opened dialog box select “Use formula”, specify the

dimension of the optimization space and write a formula that defines the objective function. The rules of

the formula writing are typical for mathematical programs and are given in [16].

The dimension of the optimization space is specified when the function is set.

In the program you can specify the output formats of the objective function value and point coordinates

(see [16]).

You can write comments to the problem to be solved. Comments are recorded in the text format and

saved in a file along with parameters and search results.

The program uses a pseudo-random number generator to perform the search. It can be initialized with

either a value that depends on the system time of the computer or a specified value.

The program can save data in XML format and export key search characteristics in text format.

Let us note that the use of the old development environment Microsoft Visual Studio 2010 when

writing a program allows even users of computers with the operating system Windows XP to work with

the project.

6. Search parameters selection

It is important to note that the choice of the search parameters can have a major impact on the effectiveness

of the random search method [3, 5, 7]. However, many search algorithms contain a large number of

heuristic parameters, and the user of such an algorithm can be very difficult to find “good” parameter

values that are suitable for the objective function. Here is a quote from [7] relating to the method of very

fast annealing proposed by L. Ingber: “One of the disadvantages of this method is that due to the large

number of parameters, it sometimes takes several months to set it up well for a specific task”. At the same

time, with proper selection of parameters, the method of very fast annealing can show very good results

[6, 7].

The presented search has only four parameters. The parameters defining the range of changes of the

radii of the balls are positive numbers 𝜈 and Γ for which inequalities 0 < 𝜈 ≤ Γ must be satisfied. The

third parameter is 𝑁— the number of search steps. The fourth parameter is 𝑚— the number of steps at

the search stage (trial transition functions are constant for all steps of one stage).

The value 𝜈 can be chosen close to the required accuracy of the solution of the problem when

approximating the argument. The value Γ can be chosen close to either the expected accuracy of the initial

approximation (the distance from the initial search point to the minimum point) or to the diameter of the

study area in the optimization space.

The number of search steps 𝑁 is desirable to be large enough. When solving a single problem, you

can, for example, perform a billion of search steps, even if the task is simple enough and it can be solved

much faster. Modern personal computers can easily perform similar volumes of calculations, at least for

not too complex objective functions. However, for such volumes of calculations the code of the objective

function must be set programmatically in the C# programming language.

The parameter 𝑚 (the number of steps at the search stage) can be set so that it is not necessary to

change the ball radius too often. All the numerical examples in the next section use the value 𝑚 = 10.

In addition to the four search parameters, you need to select the starting point of the search. It

is obvious that it is better to locate the starting point closer to the point of global extremum.

MMPAM’2019

IOP Conf. Series: Journal of Physics: Conf. Series 1352 (2019) 012054

IOP Publishing

doi:10.1088/1742-6596/1352/1/012054

7

The proposed search algorithm is largely free from the insurmountable difficulties of choosing

parameters. In particular, in the numerical examples of the next section, a minimal selection of

parameters was carried out, consisting literally of several attempts to launch a program with

different values of parameters.

7. Examples of the program use

Here are some examples of using the program to solve optimization problems. A personal computer with

Intel Core i5-4460S processor was used for calculations.

7.1. Example 1

Let's use an example from [5]. Here 𝑋 = ℝ2, 𝑥 = (𝑥1, 𝑥2),

𝑓(𝑥) = 𝑓(𝑥1, 𝑥2) = 𝑥1
4 + 𝑥1

2 + 𝑥1𝑥2 + 𝑥2
2.

The function 𝑓 takes the minimum value at a single point 𝑥∗ = (0, 0) and 𝑓(𝑥∗) = 0. The starting point

of the search is 𝑥 = (1, 1) and 𝑓(𝑥) = 4. The number of search steps 𝑁 here is 104.

Algorithm B of the book [5] gets the minimum value of the objective function 2.7 × 10−6. Algorithm

B corresponds to the search for algorithm 1 using the normal probability distribution as a transition

function.

Algorithm C of the book [5] gets the minimum value of the objective function 2.5 × 10−7. Algorithm

C also uses the normal probability distribution as a transition function, but represents a more complex

search variant, in which the displacement made in the previous step of the algorithm is taken into account

when constructing a new search point.

The homogeneous search algorithm of the article [16] gets the minimum value of the objective function

9.9 × 10−49.

Algorithm 2 of this work with parameters 𝜈 = 10−165, Γ = 1 and 𝑚 = 10 gets the minimum value of

the objective function equal to zero (i.e. less than the value 5 × 10−324 that determines the range of values

of the type double of the C# programming language) and the minimum point (−5.0 × 10−163, 1.3 ×
10−163). We note that in this case the maximum accuracy with which you can perform calculations in C#

using the numeric format double is achieved (due to the fact that it is impossible to calculate the value of

the objective function more accurately).

Algorithm 1 of homogeneous search [16] was required to take 106 steps to obtain the zero value of

the objective function.

In this example, the search for algorithm 2 turned out to be much more accurate than the algorithms B

and C of the book [5] and algorithm 1 of the article [16].

7.2. Example 2

The optimization space is 𝑋 = [−8, 8]2, 𝑥 = (𝑥1, 𝑥2),

𝑓(𝑥) = 𝑓(𝑥1, 𝑥2) =
1

2
((𝑥1

4 − 16𝑥1
2 + 5𝑥1) + (𝑥2

4 − 16𝑥2
2 + 5𝑥2)).

The function 𝑓 has four local minima, one of them is global. The starting point of the search is 𝑥 =
(4.0, 6.4) and 𝑓(𝑥) = 537.18. Search algorithm 2 with the parameters 𝜈 = 10−9, Γ = 10, 𝑚 = 10 and

𝑁 = 20000 finds the minimum value of the objective function −78.3323314075428 and the minimum

point (−2.903534, −2.903534). We note, that here we have reached the limit of accuracy with which

you can perform calculations in C# using the numeric format double (because of the fact that it is

impossible to accurately calculate the value of the objective function).

The obtained results are close to the results of a homogeneous search of the article [16].

7.3. Example 3

The space is 𝑋 = [−4, 4]10, 𝑥 = (𝑥1, 𝑥2, … , 𝑥10),

MMPAM’2019

IOP Conf. Series: Journal of Physics: Conf. Series 1352 (2019) 012054

IOP Publishing

doi:10.1088/1742-6596/1352/1/012054

8

𝑓(𝑥) = 𝑓(𝑥1, 𝑥2, … , 𝑥10) = ∑(100(𝑥2𝑛 − 𝑥2𝑛−1
2)2 + (1 − 𝑥2𝑛−1)2)

5

𝑛=1

.

The 𝑓 function is a well-known Rosenbrock test function used for local optimization methods. The

function 𝑓 takes the minimum value 𝑓(𝑥∗) = 0 at the point 𝑥∗ = (1, 1, … , 1). The starting point of the

search is 𝑥 = (−1.2, 1, −1.2, 1, … , 1) and 𝑓(𝑥) = 121. Search algorithm 2 with the parameters 𝜈 =
10−17, Γ = 4, 𝑚 = 10 and 𝑁 = 107 finds the minimum value of the objective function 3.7 × 10−29. The

run time of the search was 1.5 seconds.

The obtained results are close to the results of a homogeneous search for algorithm 1 of [16].

7.4. Example 4

Let us consider an example with a very simple objective function, but in the optimization space of a very

large dimension for the random search methods. Here is the space 𝑋 = ℝ1000, 𝑥 = (𝑥1, 𝑥2, … , 𝑥1000),

𝑓(𝑥) = ∑ 𝑥𝑛
21000

𝑛=1 . The function 𝑓 takes the minimum value 𝑓(𝑥∗) = 0 at a single point. The starting point

of the search is 𝑥 = (1, 1, … , 1). Search algorithm 2 with the parameters 𝜈 = 10−80, Γ = 10, 𝑚 = 10

and 𝑁 = 106 finds the minimum value of the objective function 1.2 × 10−155. The run time of the search

was 13 seconds.

A homogeneous search of the article [16] obtained the minimum value of the objective function

1.6 × 10−14 when 𝑁 = 106. The search run time was 13 seconds.

In this example, the search for algorithm 2 turned out to be much more accurate than the search for

algorithm 1 of article [16].

8. Conclusion

The obtained results show that the presented random search program can be successfully used to solve

optimization problems. The program itself is easy to use and the choice of search parameters is not a

difficult task. At the same time, the program allows you to solve problems with the utmost precision that

can be obtained using the double number format of the C# programming language.

References

[1] Ermakov S M and Zhigljavsky A A 1983 On random search of global extremum Probability theory

and its applications 1 129–136

[2] Ermakov S M, Zhigljavsky A A and Kondratovich M V 1989 On comparing some of the random

search of global extremum Journal of computational mathematics and mathematical physics

Vol 29 2 163–170

[3] Zhigljavsky A and Zilinskas A 2008 Stochastic global optimization (Springer-Verlag Berlin)

[4] Zhigljavsky A and Zilinskas A 2016 Stochastic global optimization: a review on the occasion of

25 years of Informatica Informatica Vol 27 2 229–256

[5] Spall J C 2003 Introduction to stochastic search and optimization: estimation, simulation, and

control (Wiley New Jersey)

[6] Ingber L 1989 Very fast simulated re-annealing Mathl. Comput. Modelling Vol 12 967–973

[7] Lopatin A S 2005 Simulated annealing Stochastic optimization in computer science 1 133–149

[8] Granichin O N and Polyak B T 2003 Randomized algorithms of estimation and optimization under

almost arbitrary noise (Moscow: Science)

[9] Syshkov Yu А 1972 On one way of organizing a random search Operations research and statistic

modeling (Leningrad: LSU) 1 180–186

[10] Tarlowski D 2017 On the convergence rate issues of general Markov search for global minimum

Journal of Global Optimization Vol 69 4 869–888

[11] Nekrutkin V V and Tikhomirov A S 1993 Speed of convergence as a function of given accuracy

for random search methods Acta Applicandae Mathematicae 33 89–108

[12] Tikhomirov A S 1998 Optimal Markov monotonic symmetric random search Computational

MMPAM’2019

IOP Conf. Series: Journal of Physics: Conf. Series 1352 (2019) 012054

IOP Publishing

doi:10.1088/1742-6596/1352/1/012054

9

Mathematics and Mathematical Physics Vol 38 12 1894–1902

[13] Tikhomirov A S 2006 On the Markov homogeneous optimization method Computational

Mathematics and Mathematical Physics Vol 46 3 361–375

[14] Tikhomirov A S 2011 Lower bounds on the convergence rate of the Markov symmetric random

search Computational Mathematics and Mathematical Physics Vol 51 9 1524–1538

[15] Tikhomirov A S 2011 On the rate of convergence of one inhomogeneous Markov algorithm of

search for extremum Vestnik St. Petersburg University Mathematics Vol 44 4 309–316

[16] Tikhomirov A S 2018 On the program implementation of a Markov homogeneous monotonous

random search algorithm of an extremum IOP Conference Series: Materials Science and

Engineering Vol 441 012055 1–8

