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Abstract. The operation of the mirror descent algorithm in a weakly inhomogeneous random 

environment is considered. A weakly inhomogeneous random environment describes a data 

stream each item of which can be processed by two alterative methods, and probabilities of 

successive processing of both methods may vary during the control process. Algorithms for one-

by-one data processing and batch data processing are given. Using numerical modeling, the 

behavior of the presented algorithms in a weakly inhomogeneous environment is studied and the 

obtained results are presented. 

1. Introduction 

Two-armed bandit problem in the minimax setting is considered. The name «two-armed bandit» is used 

to describe a random environment in which two actions are available, similarly to a slot machine with 

two arms. In the literature, the problem is described in detail, see, e.g. [1–2]. The important feature of 

the problem is that the algorithm, operating in the random environment, does not know which of the 

actions is the most profitable; it can only evaluate them in the control process, gradually receiving 

information from the random environment. The main goal of the algorithm in this case is to maximize 

the average expected income for a certain control horizon. This problem has applications in various 

fields, such as data processing and machine learning. 

In what follows, we will consider a two-alternative random environment. Let  2,1=X  be the set of 

actions available. At each instant of time Nn ,...,2,1=  we can select only one of the available actions 

denoted by nx . The choice of the action can bring income (1) with probability 
nx  or bring nothing (0) 

with probability 
nx−1 . In previous articles, for example, in [3], strictly stationary probability 

distributions were considered ),( 21  = , in which   remains unchanged throughout the control 

horizon. However, in real-life problems such a condition is rarely performed because physical processes 

tend to have some randomness. Therefore, below we will consider a weakly inhomogeneous 

environment, defined as a Markov chain with two states 1S  and 2S : 
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where x  – is the fixed probability of winning when choosing action х , 0s  – the deviation of 

probability of winning. We believe that the chain is homogeneous and has the following transition matrix 
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where 10   is fixed transition probability. 

This environment describes the inhomogeneity of the input data with which the algorithm operates. 

In a weakly inhomogeneous environment, the probabilities of winning can vary within certain limits, 

and this causes additional problems in evaluating these probabilities. 

We introduce the loss function on the control horizon N  as follows 

 
=

−=
N

n

nnnNL
1

)2()1( )),(max(  , (3) 

where n  is the income at instant of time n . Next, we will consider the loss function in a normalized 

form. 
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where 25.0=D  is the maximum possible variance of income. 

We will consider the problem of minimizing the loss function NL . To solve the problem, we will 

use the mirror descent algorithm. This algorithm and theoretical estimates for it in the case of one-by-

one data processing are given in [4]. In [5], batch versions of the mirror descent algorithm are given. 

The structure of the article is as follows. Section 2 describes the basic mirror descent algorithm. 

Section 3 discusses descriptions of algorithms optimized for batch processing. Section 4 contains the 

results of numerical simulation of the operation of algorithms in a weakly inhomogeneous random 

environment. 

2. Algorithm for one-by-one data processing 

Consider the basic mirror descent algorithm based on the algorithm from [4], but with some changes. 

We introduce a probability vector );( )2()1( pppn = , dual vector );( )2()1(  =n  and vector of 

stochastic gradient );( )2()1( uuun = . The description of the algorithm uses the Gibbs distribution which 

is defined as follows 
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Algorithm 1 

Set the initial values )5.0;5.0(0 =p  and )0;0(0 = . 

For all Nn ,,1=  perform the following operations: 

1) Choose the action ny  according to the vector 1−np : 2,1,)( )(
1 === − lplyP l

nn ; 

2) Get the income n  for the use of action ny : 
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===
 (6) 

3) Calculate the stochastic gradient )( 1−nn pu  according to the following formula: 
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4) Update vectors n  and np  
as follows: 
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where 15.0)1( 00 +=+= nnDn  , 00   is a tunable parameter of the algorithm. 

3. Algorithms for batch data processing 

The above algorithm demonstrates good results, but it processes the data one-by-one, that is, after 

applying each action, it waits for the environment to respond. However, there are real-life tasks in which 

the reaction time of the environment can take quite a long time. One of the approaches to optimization 

in this case is the use of batch processing. For a batch, the execution of actions can be run in parallel, 

after receiving the response of the environment to the execution of each of them, the algorithm evaluates 

and proceeds to process the next batch. 

With batch processing, denote TMN = , where M  is a batch size, T  is a number of stages. Thus, 

the total processing time is no longer dependent on the control horizon, but depends only on the number 

of stages T . 

Consider the first version of the algorithm for batch processing. It involves the consistent use of 

actions within the batch without recalculating the vector np . 

Algorithm 2 

Set the initial values )5.0;5.0(0 =p  and )0;0(0 = . 

For all Tt ,,1=  perform the following operations: 

1) Introduce the vector )0;0();( )2()1( == t . 

2) Processing group t . For all tMMtn ,,1)1( +−= : 

 a) Choose the action ny  according to the vector 1−np : 2,1,)( )(
1 === − lplyP l

nn ; 

 b) Get the income n  for the use of the action ny  
using (6); 

 c) Update vector t : )1(
)()(

n
ny

t
ny

t  −+= . 

3) Calculate the stochastic gradient )( 1−tt pu  
according to the following formula: 
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4) Update vectors t  and tp  using (8). 

Algorithm 2 is very similar to Algorithm 1 (in the particular case when 1=M  it replicates it 

completely), but it already allows one to optimize the processing time due to parallel execution of 

actions. 

Consider another variant of the algorithm, which divides the batch in proportion to the vector p  and 

then performs the appropriate action for each of the parts. 
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Let vector );( )2()1(
ttt MMM = , 0,0 )2()1(  tt MM  and MMM tt =+ )2()1(

. Denote by 

][],[ )2()1(
tt MM  the nearest integers to )2()1( , tt MM . 

Algorithm 3 

Set the initial values )5.0;5.0(0 =p  and )0;0(0 = . 

For all Tt ,,1=  perform the following operations: 

1) Calculate for which part of the batch the first action should be used and for which the second: 

2,1,)(
1

)( == − lMpM l
t

l
t ; 

2) Apply the l –th action ][ )(l
tM  times and calculate the total vector of income t ,

 
where n  is 

calculated by (6): 
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3) Calculate the stochastic gradient )( 1−tt pu  according to the following formula:  
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4) Update vectors t  and tp  using (8). 

Algorithm 3, in addition to the advantages of parallel processing, also makes it possible to reduce 

total expected losses compared with Algorithm 1. 

In some cases, with a small number of stages, we can combine Algorithm 1 and Algorithm 3, first 

performing the evaluation using Algorithm 1 in a small initial stage, and then continue processing with 

Algorithm 3. 

Algorithm 4 

1) Apply Algorithm 1 for 0,,1 Mn =  and get estimates 
0Mp  and 

0M . 

2) Apply Algorithm 3 for NMn ,,10 += , using 
00 Mpp =  and 

00 M =
 
as initial values. 

4. Simulation results 

We will perform numerical simulations of the operation of algorithms in a weakly inhomogeneous 

random environment. In the simulation, we will consider the case when the success probabilities in 

choosing actions differ by a small amount of the order of Nd / , since otherwise the task of choosing 

the optimal action is greatly simplified. Define fixed values for success probabilities    as follows 

 )/5.0,/5.0(),( 21 NDdNDd −+==  , (12) 

where 0d  – is the difference between the probabilities of winning when choosing actions. Next, we 

will use the values of    in expression (1) to determine the outcomes of the Markov chain describing a 

weakly inhomogeneous environment. 

On figure 1, simulation results for Algorithm 1 with 2.0=s  and different   are presented. Control 

horizon is equal to 10000=N . 
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Figure 1. Normalized losses for Algorithm 1. 

One can see that the most difficult for the algorithm are cases of small inhomogeneity with N/1  

in these cases, the greatest increase in losses is observed relative to the losses of the algorithm in a 

stationary environment ( 0=s ).With such values of  , for the entire time of control, the switching of 

states occurs no more than once and the increase in losses is quite explicable. However, another 

interesting fact is that when N/1 , the losses of the algorithm in a weakly inhomogeneous 

environment virtually do not differ from the losses in a stationary environment, that is, the algorithm 

adapts to changes in the environment, despite the fact that they occur quite often. 

On figure 2, simulation results for Algorithm 2 with 2.0=s  and different   are presented. Control 

horizon 10000=N , batch size 100=M , number of stages 100=T . 

 

Figure 2. Normalized losses for Algorithm 2. 
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Algorithm 2 shows a similar behavior with Algorithm 1, however, it shows higher losses due to the 

fact that it is optimized for batch processing and applies actions more often than it evaluates 

probabilities. 

On figure 3, simulation results for Algorithm 3 with 2.0=s  and different   are presented. Control 

horizon 10000=N , batch size 100=M , number of stages 100=T . 

 
Figure 3. Normalized loss for Algorithm 3. 

 

Algorithm 3 is more resistant to single state switching for small  , since it uses a different approach 

to splitting a batch. In addition, Algorithm 3 retains an advantage over Algorithm 1, demonstrating lower 

losses, not only in a stationary environment, but also in a weakly inhomogeneous environment. 

5. Conclusion 

We reviewed the operation of the mirror descent algorithm on inhomogeneous data sets. Four algorithms 

were presented, one for one-by-one data processing and three modifications of the algorithm for batch 

data processing. 

Batch data processing allows one to optimize the total control time by applying actions in parallel 

for each group. With Algorithm 3, batch data processing can also reduce total losses. 

Using numerical simulations, the operation of the algorithms on sufficiently large control horizons 

in different inhomogeneous environments was considered. An important result is the stable work of the 

presented algorithms with inhomogeneous data sets. Algorithms are able to adapt to changes in input 

data without a significant increase in expected losses. 
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