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Abstract. Method of V.M. Alekseev was used to obtain the clarifications of lower estimates for
the lower singular exponent and of upper estimates for the upper singular exponent of a linear
system of differential equations. In contrast to the classical results of the freezing method, which
assume that the derivatives of the elements of the matrix of the coefficients of the system are
small, the new estimates admit that these derivatives are unbounded.

1. Introduction
Consider a linear system of differential equations.

x'= At)x, xeR", A{t)eR*, [[AQD)[<M. )
It is well known that it is impossible to describe the behavior of solutions of a non-autonomous system
(1) only by the eigenvalues of the matrix A(t) . It is necessary to introduce additional conditions on the

matrix A(t) . In the freezing method, system (1) is written in the form
X'=A(ty)X + (A(t) — Aty )X , the addendum(A(t) - Aty )X is considered as a perturbation of
the linear autonomous system X' = A(to ) X. In order to apply the freezing method, it is now necessary
to accurately estimate the growth of the matrix €XP(A(ty)t), which can be considered as the
fundamental matrix of the “frozen” system X = A(ty)X. We will assume that the matrix A(t) of

system (1) satisfies for any {,S € R™ to inequality
IA®) - A(s)I< ot —s|* 2)
with some positive constants & and O .
The case when @ > 1presents no interest, since from inequality (2) it follows, that A'(t) =0 and
the system (1) must be autonomous. The case when ¢ =1, which under the existence of A'(t) is

equivalent to [1, 136] inequality || A'(t) |[< &, was studied in the classical works on the method of
freezing. We introduce the notation
p=sup maxRe 4 (t),o = inf minRe 4 (t). 3)
teR™ ! teRt |
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Here ﬂvi (t), I =1,...,N are the matrix A(t) eigenvalues. The first estimates from above of the highest

exponent A of system (1) in terms of p and O in the case @ =1 were obtained in [2, 3].

These estimates were refined in [4;5]. The attainability of estimating the method of freezing by
parameter O in the case & =1 was proved in [6] for the second-order system (1) and in [7] for the
system (1) of arbitrary order. In [8] for the case when ¢ =1, various refinements were obtained for
estimate of the upper exponent A and the lower exponent A from below. For the case when & € (0;1)

in [9], the upper estimate of the senior exponent A and the lower estimate of the lower exponent A are
obtained.

A<p+Cstra) 4> 5 _cstiinre) )
Here C=n+a -1+ Dexp((n +a _1)51/(n+a) ), constant D from estimate [ 10, 22]
lexp(AUt) ||< DA +1t)" texp(pt), uteR*. (5)

Note that estimate (5) follows from a more accurate estimate. [1, 132]

exp(A(u)t) ||I< exp(pt)Z(ZMt) uteR". (6)

It is true that,

lexp(A(u)t) ||I< exp(max Re (u)t)z (21] A(u)||) <exp(pt nz ZMt)

k=0 k! k=0

k
= exp(pt) 1+Z Mt) <@1+t"HDexp(pt) <@ +1)"TDexp(pt), u,teR".

k=1
V.M. Alekseev received the upper estimate of the upper special exponent QO of system (1)
1
on(n+1) \n+1
QO < P+ 2M ((—2) (7
8M

assuming that|| A(t) — A(S) |[< |t —S|. Using a more accurate estimate (6), with the method of
V.M. Alekseev for the case

IA®) - AG) <5t -s|*, ae (0],
we clarify the constant Cin the estimates (4). We will get the lower estimate for the lower special
exponent @ and the upper estimate of the upper special exponent QO .

Since inequality holds true [10, 149]
—~M<wyfw<A<SASQLQ <M,

we get similar estimates for the central exponents @ and €2, as well as for the junior and senior
Lyapunov’s exponents A4 and A .

2. The main result and examples
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Theorem. Let the matrix of coefficients A(t) of system (1) satisfy inequality (2) with constants
ae (O;l] and O >0, the parameters pPand @ are given by relations (3), then for the upper special

exponent {2 and for the lower special exponent @) the estimates are valid
1

Pk + @) e
Qy<p+2M|(2M) T2y 220 s
“ (k-1
S,
n n ot
0> 0 —2M| (M te S Tk @) |\ o (8)
(k-1

In the last inequalities F() is the gamma function.

Remark 1. Both estimates (8) are of interest if the constant O is sufficiently small. If

dox Lk +a) . . .
5(2|\/| ) Z— >1, then the estimates (8) are worse than the obvious estimates
= (k=D!
Qo <M < p+2M and @y =2 —M >0 —2M . We took into account that— M < p<M and
-M<o<M.

Proof. We use the following theorem by V.M. Alekseev [1, 134].

Let
| exp(A(u)t) [[<77(t) < Dexp(yt), u,teR™, 9)
| At) — A(S) I< oot —s), (10)
and ¥ is such that
+00
J.e_ﬂﬂ(’[)(ﬁ(f)df <1. (11)

We denote the lower bound of such ¥ by ¥, then the upper special exponent {2 of system (1)
satisfies the inequality. The central and senior exponents of system (1) even more satisfy this inequality
Qp<7p.

We apply the Alekseev theorem, using as the 77(t) function which is on the right-hand side of
inequality (6). To satisfy condition (9) of the theorem, it suffices to take any » > 0. Let condition (10)

be satisfied for the function (0(2' ) =0 | T |a ,a € (0;1]. To fulfill condition (11) of the theorem, we

require that

i e p)r ZM)k K+a
je "n(z)p(r)dr = je p 5Z—dr<l.

+00

Since je (r=p)z k+ad
0 (7_P)

T(k +a-1)

Kool > Ve come to the inequality
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M) Tk +a+1)
' kK+a+1

ol
o
o KXK' (r-p)

where I'(*) is a gamma-function.

For yo =Inf ¥ the following equality should be preformed

25 2M T(k+a+])

(7/0 _p)k+0!+l -

It is clear that the quantity Zy = must satisfy the equation

Yo— P

k-1
25 (M) T(k+a)z§ ™ =1,

o1 (k — 1)
which after the change of Z = 2|\/|ZO looks like
Zr(k +a)zfte 4 -
1 .
e (k=D
We assume that the constant O is SO srnall that
5 Tk+a) )

+1
M) ia (k- 1)'
Otherwise, as noted in Remark 1, estimates (8) are worse than trivial estimates.

The left side of inequality (12) monotonously increases, when Z >Qand when Z =1 satisfies
inequality (13), therefore the positive root & o of equation (12) is larger than 1. For this root we have

Tk+a)C& 8007 ATk +a)
a+1kzl (k—l)! (ZM)(ZHZ (k 1)| .

Out of the last 1nequahty we have

1
0 _
1 I'k+a)| nta
Lo=2Mzy>| (2M) %5 [k +a)
k-1)!
1 (k=1
. 1 . iy
Since Yy = p + —, then by the Alekseev theorem we have the first of inequalities (8).
Z

0
A lower bound for the lower special exponent is easily obtained by going to the adjoint system.

Let us consider the system Y’ = ~AT (t)y associated with the system X' = A(t)X . If the matrix

A(t) satisfies inequality (2), then the matrix — AT (t) of the adjoint system also satisfies the same
inequality.
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The eigenvalues A; (t) of the matrix A(t) are related to the eigenvalues g (t)of the matrix

— AT (t) by equality L) == @), i= ﬁ , S0
Pl =sup max Re z; (t) = sup max(— Re 4 (t))=— inf minRe 4 (t) = -o.
teR* ! teR*t ! teR" 1
For the upper special exponent Qg of the conjugate system, we have the estimate from above.
1
— 1
n
1 T(k n+a ——
Ql <p' +2M|(2m) Lkt @) 17 snear.

“ (k -1)!
Since Qg = —@, we go to the second inequality (8). The theorem is proved.

Remark 2. System (1) with a matrix A(t) satisfying inequality (2) with & € (0;1], can be correct

and wrong. We remind that the concept of a correct system of differential equations was introduced by
A.M. Lyapunov.

System (1) is called correct if the sum of the Lyapunov indices of this system is equal to the lower
integral average of the matrix of coefficients, i.e.

n t
o= limt? j SpA(u)du.
- )

t—>+o0

Solving the problem of stability in the first approximation is easier if the linear part of the system is
correct. Note that correct systems include reducible systems (and, therefore, autonomous and periodic
systems) and almost reducible systems according to B.F. Bylov.

Example 1. System

, 5sin(t1’3) 1
= X
0 1
is correct, since the elements of the main diagonal of the triangular matrix of coefficients have strict

integral averages (Lyapunov regularity criterion [1,141]).

t
The equality 1im t Sin(T 13 )j 7 =0 is easily proved by replacing the variable 77 =7 13 and

t—+o0
0

further integration in parts.
The matrix A(t) of coefficients of the system satisfies the inequality

| A - AGS) €S|t —s|*, tseR*

with & =1/3, since the function 8y (t) = J'sin (tlls

5‘sin(tl/3)— sin(s”gx < 2§‘sin(0.5(t1/3 - 31/3))‘ 1<8

b

) satisfies the inequality. It is true that

/3 _ 31/3‘ <dlt- 3\1/3.

Example 2. System
. (0.755(sinIn¥t+1+1/3cos It +1) 1 \
X' = 0 1 X, teR",
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is wrong because the diagonal element @7 (t) has no strict integral average. Indeed, the limit

t—>+00 t—>+o00

t
lim t‘ljall(r)dr:0.755 lim ttilsinln3t+1
0

does not exist.
It remains to be noted that the element 8y;(t) satisfies the inequality

30.755(‘sin In3/t +1 —sinInd/s +1‘ +1/3‘cos In3/t +1—cos In¥/s +1‘)
<0.755(8/35in 0.5(In3t +1 - In¥s +1)|)< SlIn¥t +1 - In¥s +]

<5|(t+D)" 3 (s+ )M - <t -5 s+ 1 <ot o7

1/3

<|x-y[".

We used the inequalities INX < X—1, X >0 and ‘Xlls — ylls‘

3. Conclusions

n
Note, that in the case, when o =1, taking into account that F(k + 1) =Kk! and Z k = O.5n(n + l) ,
k=1
the first of the estimates (8) of the theorem turns into an estimate
1

ﬁ’](n+l)jn+l
Q. < piom| NOFD st
0=p [ 8M 2

received by V.M. Alekseev [1, 137].
Estimates (8) can be converted taking into account the properties of the gamma function

F(X+l)=XF(X) to the form
1
n e -
Qy < p+2M (ZM)_HZ(k+a_l)(k+Z<_21;;”(a+1)ar(a) " snra
k=1 —

b

1
—— 1
n — —2)... n+a ——
09> o —2M| (2M )_1_az k+a-Dk+a—-2)(x+Dal () Snta
o=t (kD!
For & € (0;1) and very small O the estimates obtained, the order is not higher than

is better than order O LAn+1) .

SH+a) (hich
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