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Abstract. In contrast to WIMPs, light Dark Matter candidates have increasingly come
under the focus of scientific interest. In particular the QCD axion is also able to solve other
fundamental problems such as CP-conservation in strong interactions. Galactic axions, axion-
like particles and hidden photons can be converted to photons at boundaries between materials of
different dielectric constants under a strong magnetic field. Combining many such surfaces, one
can enhance this conversion significantly using constructive interference and resonances. The
proposed MADMAX setup containing 80 high dielectric disks in a 10T magnetic field would
probe the well-motivated mass range of 40–400µeV, a range which is at present inaccessible
by existing cavity searches. We present the foundations of this approach and its expected
sensitivity.

1. Introduction

Axions are prime cold dark matter (DM) candidates, originally proposed to solve the strong
CP-problem. This originates from the fact that quantum chromodynamics (QCD) allows for
CP-violation via a term L ∝ θGa

µνG̃
µν
a , where θ is an angular natural constant and Ga

µν , G̃
µν
a

are the gluon field strength tensor and its dual. However, measurements of the neutron electric
dipole moment constrain |θ| < 10−10, which appears unnaturally small. The axion is introduced
by promoting θ to a field whose potential is minimized at θ = 0. Starting from a non-zero
value θI it will roll down to eventually coherently oscillate around the CP-conserving minimum
θ = 0, naturally explaining the smallness of θ – and giving rise to a new, weakly interacting,
light particle: the axion [1].

Causality implies that at some early time our universe consisted of uncorrelated patches with
different initial angles θI . If inflation happened after this time (Scenario A), then our visible
universe was inflated out of one of these patches, leaving the axion mass broadly unconstrained.
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If inflation happened before this time (Scenario B), these patches give rise to axion strings and
domain walls, constraining the axion mass to 50µeV � ma � 200µeV, cf. e.g. [2].

Various different experiments have been proposed or are underway to search for axion DM,
mostly relying on the interaction between axions and photons; for a review cf. e.g. [3]. In this
note we briefly review the foundations of axion DM detection with a dielectric haloscope like
MADMAX, as recently introduced in [4, 5].

2. Axion Electrodynamics

The interactions of electromagnetic (EM) fields with axions are described by the Lagrangian

L = −1

4
FµνF

µν − JµAµ +
1

2
∂µa∂

µa− 1

2
m2

aa
2 − gaγ

4
Fµν

�Fµνa, (1)

where Fµν is the EM field strength tensor, Aµ the respective vector potential, Jµ the EM 4-
current. a denotes the axion field, ma its mass, and gaγ a coupling constant of dimension
(energy)−1. We use natural units � = c = 1 and Lorentz-Heaviside convention with the fine-
structure constant α = e2/4π with e the elementary charge. For QCD axions gaγ is proportional
to the axion mass and we expect [6]

gaγ = − α

2πfa
Caγ = −2.04(3)× 10−16 GeV−1

�
ma

1µeV

�
Caγ , (2)

with fa the axion decay constant anti-proportional to ma and Caγ a model dependent constant
of order one. For more general models (axion-like-particles) gaγ is a free parameter.

If axions make up all DM, then their local abundance would be ∼ 0.3GeV cm−3/ma. With
ma ∼ 100µeV this corresponds to a number density of ∼ 3× 1012 cm−3, while their de Broglie
wavelength is λDB = 2π/(mava) ∼ 10m due to their non-relativistic velocity va ∼ O(10−3) and
small mass. Therefore it is sufficient to treat DM axions as a classical field and we may just solve
the classical equations of motion following from Eq. (1). Further assuming a static, external
magnetic field Be, this leads to modified inhomogeneous Maxwell equations: [5]

�∇ ·E = ρ− gaγBe ·∇a , (3a)

∇×H− �Ė = J+ gaγBeȧ , (3b)

ä−∇
2a+m2

aa = gaγE ·Be , (3c)

where ρ and J are the electric charge density and current respectively, E and B the electric
and magnetic field, � the dielectric constant and H the macroscopic magnetic field. Here H is
without the contribution of Be and J respectively without the current needed to generate Be.
Note, this implies that the oscillating axion field a ∝ exp(−imat), induces an electric field

Ea(t) = −gaγBe

�
a(t) ∼ 1.3× 10−12 V/m

Be

10 T

|Caγ |f
1/2
DM

�
, (4)

where fDM is the fraction of DM made up by axions.
Further, the homogeneous Maxwell equations are unchanged. Thus, the usual EM boundary

conditions for E and H fields remain, i.e., on boundaries of two media with different dielectric
constant � their component parallel to the boundary must be continuous. However, Eq. (4)
suggests a jump of the induced electric field on such a boundary. In order to fulfill all Maxwell
equations, EM waves must be emitted from the boundary compensating this discontinuity [7].
Their amplitudes are

Eγ
1 = +∆Ea �2n1

�1n2 + �2n1

, Eγ
2 = −∆Ea �1n2

�1n2 + �2n1

, Hγ
1,2 = −∆Ea �1�2

�1n2 + �2n1

, (5)
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with ∆Ea = (Ea
2 − Ea

1 ) and ni =
√
�i the refractive indices of the media. This leads to an

emitted power from the boundary of

Pγ = 2.2× 10−27W

�
A

1m2

��
Be

10 T

�2

f(�1, �2)C
2
aγ fDM . (6)

at the axion oscillation frequency ma with a dispersion from the cold dark matter velocity
∼ O(10−6)ma. Here A is the interface area between the dielectrics and typically f(�1, �2) ≤ 1,
depending on the dielectrics.

3. Power Boost

Mirror  Dielectric  Disks  Receiver 

B
e 

Figure 1. MADMAX idea: Each interface
coherently emits EM radiation due to the presence
of the axion field. Depending on the axion
mass and the disk placements these may interfere
constructively and ’boost’ the emitted power
compared to a single mirror setup by 4–5 orders
of magnitude.

By employing many dielectric disks in a
strong magnetic field Be, each surface
emits this radiation coherently, since the
axion coherence length guaranteed by its
de Broglie wavelength is greater than
the size of the setup. By placing the
disks accordingly those contributions may
interfere constructively while also internal
reflections may resonantly enhance the
emission, both leading to a total emission
much higher than what would be expected
from a single surface. We define the power
boost factor β2 as the ratio between the
power emitted by such a ‘booster’ and the
power emitted by a single mirror.

The fields of an EM wave emitted by such
a system can be calculated by identifying
the left and right-propagating EM field
amplitudes in each region r with dielectric
constant �r according to Fig. 2 by a vector (Rr, Lr)

T and defining the transfer matrices

Reflection / Transmission: Phase Propagation: Axion Induced Fields:

Gr=
1

2nr+1

�
nr+1+nr nr+1−nr

nr+1−nr nr+1+nr

�
, Pr =

�
e+iδr 0
0 e−iδr

�
, Sr =

Ar+1 −Ar

2
1 (7)

where δr = ωnrdr is the phase depth of region r. Then the amplitudes in region m can be
expressed in terms of region m− 1 and recursively in terms of region 0 as

�
Rm

Lm

�
= Gm−1Pm−1

�
Rm−1

Lm−1

�
+ E0Sm−1

�
1
1

�
= . . .

= T
m
0

�
R0

L0

�
+ E0

m�

s=1

T
r
sSs−1

�
1
1

�
, (8)

with a transfer matrix from region a to b with b < a

T
a
b = Ga−1Pa−1Ga−2Pa−2 . . . Gb+1Pb+1GbPb, T

a
a = 1. (9)

The power boost factor is then easily obtained by the rightmost outgoing amplitude as
β2 = |Rm/E0|

2, requiring R0 = Lm = 0. Similarly the reflectivity of the system is just given by
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Figure 2. Parametrization of left- and right-
propagating waves with amplitudes Lr and Rr

in our system of different regions with different
dielectric constants �r and thickness dr.

R = Rm/Lm, requiring R0 = 0. As an example, it is straightforward to calculate the reflectivity
of a single disk, given by

Rdisk =
(n2 − 1) sin δ

i 2n cos δ + (n2 + 1) sin δ
, (10)

where n is its refractive index and δ = ωnd its optical thickness as defined above. For
thicknesses of δ = 0,π, 2π, . . . the disk does not reflect any radiation, i.e., is transparent; while
for δ = π/2, 3π/2, . . . the disk becomes maximally reflective. In a many disk system one can for
example place the disks at distances to coherently add up the signal for frequencies at which they
are transparent or make the system maximally resonant at which they are maximally reflective.
Combining both effects enables to form broadband boost factors as described below.

We remark that the classical results can be confirmed by an explicit quantum-field calculation.
Evaluating the matrix element for the axion-photon conversion under an external magnetic field
M = �f|Haγ |i� = gaγ/2ωV

�
d3r eip·rBe(r) · E

∗

k(r) and using non-momentum-eigenstates and
non-translational invariant Garibian wave functions as out-states for the emitted photons, one
may derive the same results than with a classical calculation [8].

4. Power Boost Properties

Figure 3. Exemplary broadband boost
factors for 20 disks, � = 24 and d = 1mm.
The frequency response can be changed with
the disk positions.

By optimizing the dielectric disk distances the
frequency response of the boost factor can be
controlled. Generally, the average distance
approximately sets the frequency while their
variance amounts for broadening the bandwidth.
For a broadband scan over various frequencies,
i.e., axion masses ma, a top-hat response is ideal.
By numerically optimizing the disk positions,
one can find such solutions approximately, as
exemplary shown Fig. 3. Crucially, the area under
the power boost factor curve

�
β2dν is conserved

(Area Law). For an explicit proof cf. [5]. While for
integrating over 0 ≤ ν ≤ ∞ this holds exactly,
it is still a good approximation in the region
containing the main peak. Therefore one can
trade bandwidth with power boost by changing
disk positions, but not simultaneously gain in

both, cf. Fig. 4, left. After scanning a broadband frequency range, one may therefore specifically
perform rescans of possible detection candidates with a much larger but narrower boost factor.

The boost factor is correlated to measurable quantities such as the reflectivity of the
disk system, as shown in Fig. 4, right. This correlation can be understood for example, by
realizing that both quantities can be calculated using the same transfer matrix formalism. Since
measuring phase instead of magnitude may involve less experimental systematics, one may also
consider the group delay of a reflected signal, which carries the same information.
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Figure 4. Boost Factor Properties. Left: Area Law.
�
β2dν is roughly constant for all spacing

configurations. Right: The boost factor is correlated with measurable quantities such as the
reflectivity of the total disk system or the group delay of a reflected signal. Adapted from [4, 9].

5. Conclusion and Outlook
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Figure 5. Discovery potential of
the proposed 80 disk MADMAX setup,
achievable within a scanning campaign
of 5 years (dark blue) and additional
2 years (light blue). Other colors show
other experimental efforts, cf. e.g. [3], to
which MADMAX is broadly complemen-
tary, probing masses corresponding to ini-
tial values of θI � 2.4 in Scenario A and
the preferred mass range in Scenario B.

We have reviewed how the presence of axion dark
matter may cause emission of EM waves from a
dielectric interface in presence of a magnetic field
and how a dielectric haloscope consisting of many
dielectric disks may boost this power.

This approach is particularly appealing for
masses � 40µeV, where traditional resonant cavity
searches struggle to achieve the required volume.
Assuming 80 dielectric disks and sufficiently low
losses (d = 1mm, A = 1m2, � = 25, tan δ ∼ 10−5) a
boost factor of ∼ 5× 104 can be achieved over a
bandwidth of 50MHz. For Be = 10T this leads to a
signal of ∼ 10−22W, measurable with state-of-the-
art cryogenic detectors. Assuming a system noise
temperature of Tsys = 8K, one could scan the range
of 40µeV � ma � 120µeV with a sensitivity of up
to |Caγ | = 0.75 within 5 years. Using quantum-
limited detectors one could extend the search to
masses ma � 230µeV, as outlined in Fig. 5. Note,
that this covers the preferred region in Scenario B
described above of 50µeV � ma � 200µeV. First
encouraging R&D activities are already underway,
for more details cf. [4, 10].
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