This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Brought to you by:
Paper The following article is Open access

First results on low-mass dark matter from the CRESST-III experiment

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation F Petricca et al 2020 J. Phys.: Conf. Ser. 1342 012076 DOI 10.1088/1742-6596/1342/1/012076

1742-6596/1342/1/012076

Abstract

The CRESST experiment (Cryogenic Rare Even Search with Superconducting Thermometers), located at Laboratori Nazionali del Gran Sasso in Italy, searches for dark matter particles via their elastic scattering off nuclei in a target material. The CRESST target consists of scintillating CaWO4 crystals, which are operated as cryogenic calorimeters at millikelvin temperatures. Each interaction in the CaWO4 target crystal produces a phonon signal and a light signal that is measured by a second cryogenic calorimeter. Since the CRESST-II result in 2015, the experiment is leading the field of direct dark matter search for dark matter masses below 1.7 GeV/c2, extending the reach of direct searches to the sub-GeV/c2 mass region. For CRESST-III, whose Phase 1 started in July 2016, detectors have been optimized to reach the performance required to further probe the low-mass region with unprecedented sensitivity. In this contribution the achievements of the CRESST-III detectors will be discussed together with preliminary results and perspectives of Phase 1.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/1342/1/012076