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Abstract. Breast cancer (carsinoma mammae) is one type of cancer that occurs due to abnormal
breast cell growth. Some of the factors that are thought to trigger breast cancer include the
unhealthy lifestyles. The existence of these factors indicates that there is a correlation between
breast cancer and patient survival. One of method for analyzing survival data is Cox proportional
hazard. Cox proportional hazard model implies that each covariate is proportional. But in reality,
there are often cases where there is a disproportionate covariate, in the sense that there is a
relationship with the time, called time dependent covariate. In this case an extended of the Cox
proportional hazard model needs to be done. Therefore, the aim of this paper to determine the
relationship between the breast cancer patients’ survival time and the factors that influence it using
extended Cox model with Bayesian approach. This methodology is applied to breast cancer
survival data from Hasanuddin University hospital in Makassar, Indonesia, for the period 2005-
2018. The result shows the factors that substantially affect the breast cancer patients’ survival time
are marital status, histology, and leukocyte levels.

1. Introduction

Cancer is the leading cause of death and disability worldwide, affecting more than 14 million people each
year, one type of cancer is breast cancer. Every year there are 1.7 million breast cancer cases and 552,000
who die [1]. There is 43.3% people suffering from breast cancer with a mortality rate of 12.9%. Breast
cancer (carsinoma mammae) occurs because of abnormal breast cell growth. In South Sulawesi, breast
cancer cases are ranked first among many cancers suffered by women [2]. Some of the factors that is
trigger breast cancer are influenced by five dietary behaviors and risks, namely high growth mass index,
lack of fruit and vegetable consumption, lack of physical activity, cigarette use and excessive alcohol
consumption. This unhealthy behavior causes the risk of cancer becoming high. The existence of these
factors indicates that there is a correlation between breast cancer and patient survival [3]. Therefore, a
method is needed to see the relationship between survival time and the factors that influence it.

Survival analysis is one method of analysis regarding the period of time from the observation process
to the occurrence of an event by looking at other things that affect the event. One of the objectives of
survival analysis is to see the relationship between explanatory variables and survival time. One of method
for analyzing survival data is Cox regression, that was introduced by Cox and Oakes (1972) [4]. In this
model the accompanying variables were included in the model as independent variables and survival time
as non-independent variables [5]. By applying the Cox regression model, it will be known the form of the
relationship between variables where the form of the relationship represents the phenomenon under study
and can produce or link what is desired with what is studied. This regression model is also known as the
proportional hazard model because the proportional assumptions on the hazard function. In general, the
Cox regression model is faced with situations where the possibility of individual failure at a time is
influenced by one or more explanatory variables [5].
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The Cox proportional hazard model implies that each covariate is proportional. But in reality, there are
often cases where there is a disproportionate covariate, in the sense that there is a correlation with the time
rating, so that in this case the model needs to be expanded. The extended Cox model is an extension of the
model of the Cox proportional hazard model, which contains time-dependent covariates or multiplications
of the covariates with functions over time.

The approach that will be used in this paper is Bayesian. In the Bayesian method population
parameters are seen as variables that have an initial distribution (prior). Before drawing samples from a
population, information is sometimes obtained about the parameters to be estimated. This information is
then combined with information from samples to be used in estimating population parameters. It seems
that the Bayesian method is more promising because there is additional information to infer population
characteristics.

There is some research have been done that related to extended Cox. Husain et al. [6] estimated
survival time of breast cancer patients using extended Cox proportional hazard, Isik et al. [7] chose the
time function and the differences between time functions using extended Cox regression model.
Kurniawan et al. [8] also used extended Cox model to determine the durability of debtor efforts on credit
risk. Meanwhile, Saegusa et al. [9] considered to use extended Cox model for modelling the time varying
treatment effect and score test statistics. Therefore, based on these research review, this paper will model
the effect of breast cancer patients’ survival times based on the factor influenced using extended Cox
model with Bayesian approach.

2. Material and Methods

2.1 Data Source

The breast cancer data used in this study is taken at Hasanuddin University Hospital in Makassar,
Indonesia from 2005-2018. The response variable of this study was the length of stay of patients until they
were declared home either in a state of improvement, recovery, referral or even death. Meanwhile, the
independent variables were age, treatment, occupation, marital status, malignancy, hemoglobin level,
stadium, histology, leukocyte levels. While the censoring indicator is indexed based on survival status.

2.2 Survival Analysis

Survival function S(t) is defined as the opportunity for an individual to survive with a survival time up to
time ¢, which is as follows:
St)=P(T>t) 2.1
Survival function in equation (2.1) can also be expressed in the form of a density function in the
following:
SO =P(T>0) = [ f(O)dt (2.2)
Hazard function or also known as hazard rate expressed by h(t). Mathematically can be written as
follows:
h(E) = lim PE<T<(t+A)T=1)
Fo_r X
= S0 = E (23)

2.3 Cox Proportional Hazard Regression
In general, the forms of the Cox proportional hazard model are as follows [10]:

h(t,X) = ho(t) exp (B1X1 + B2 X2+ . + BiXi) (2.4)
where hg(t) is baseline hazard function, 1, f,,..., Bk is regression parameter and X; , X,,..., X is  the
independent variables.
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2.4 Weibull Distribution

The Weibull distribution is one of the continuous distributions in statistical probability theory because of
its ability to approach several types of data distribution. According to Walpole and Myers in Beren et al.
[11], Weibull distribution can also be used on reliability issues and life time testing such as the time span
until the failure of a component occurs or the durability of a component is measured from a certain time to
damage. The probability density function of the Weibull distribution is written as:

Ft:a,0) = %" exp{— (g)“}t >0,a>0,0>0 (2.5)

at
0
Parameters a and 6 determine the shape and scale of distribution. If 6~% = u then the Weibull
distribution probability density function becomes:

f(t:a,0) = aut®* texp (—ut%) (2.6)

a

2.5 Extended Cox
The extended Cox model is an extension of the model of the Cox proportional hazard model in equation
(2.4), which contains covariates that are time-dependent or multiply from the covariate with a function of
time. The general form of the extended Cox model as:
h(t X(©) = ho(Dexp [£5_; By Xp + T X095 (1)] (2.7)
If there is a p; covariate that meets the PH assumption and there is p, that does not meet the PH
assumption, then p; + p, then the following model is obtained as follows:

h(t, X)) = ho(t)exp [2’5;1 Bo Xp + X0, 1 B0 Xp + Xpip. 1 66 Xu0p (t)] (2.8)

2.6  Parameter Estimation

2.6.1 Bayesian Approach

In estimation theory, there are two approaches, namely the classical statistical approach and the Bayesian
statistical approach. The classical statistical approach relies entirely on inference processes on data
samples taken from the population. While the Bayesian approach, in addition to utilizing data samples
taken from the population also takes into account an initial distribution called priors [12]:

2.6.2 Likelihood Function

The likelihood function is a joint density function f(xq, X3, ..., X5, ; 6) of random variables X;, X,, ..., X,,.
For example there are n observations of xi, x5, ..., x,which each has a function of probability density
f(x,0), the likelihood function of a function of 6 which is denoted by L(6), namely L(6) =
f(xq, x5, o, Xy ; 0), namely:

L(®) =Ilizs f(xi: 0) 2.9)

2.6.3 Prior Distribution
The main problem in the Bayesian method is the selection of the prior distribution w(8) for a parameter.
The prior indicates uncertainty about the unknown parameter 6. Prior distributions are grouped into two
groups based on the shape of the likelihood function [13] as follows:
1. Relating to the form of distribution of the results of identification of the data pattern
a. The distribution of the prior conjugate (conjugate) refers to the reference model analysis especially
in the formation of its likelihood function so that in determining the prior conjugate it is always
thought about determining the pattern which has a conjugate form with its likelihood builder density
function.
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b. The prior distribution is not a conjugate (non-conjugate), when giving priors to a model does not
heed the pattern forming the likelihood function.

2. Regarding the determination of each parameter in the prior distribution pattern

a. Prior informative distribution, referring to the giving of parameters from the prior distribution that
have been selected, either prior conjugate or non-conjugate distribution, giving parameter values to
the prior distribution will greatly influence the form of posterior distribution to be obtained from the
information data obtained.

b. The prior non-informative distribution, if the prior distribution distribution is not based on previous
information. If knowledge of priors is very weak, priors can have normal distribution with zero
mean and large variance. The impact of prior use with a zero average is the estimated parameter
smoothed to zero. But because this refinement is done by variance, the smoothing can be reduced
by increasing the variance.

2.6.4 Posterior Distribution
Posterior distribution is a conditional density function 6 if X observation value is known, can be written:
f@lx) =220 (2.10)
If 6 is continuous, the prior and posterior distributions 6 can be expressed by the density function.
The conditional function of a random variable if it is known that the value of the second random variable
is a function of density along with two random variables divided by the second random variable.
The function of the shared density needed can be written in the form of a prior distribution and the
likelihood function is given as follows [14]:
fO0,x) = f(O)f (xi;6) (2.11)
where f(0) is the prior distribution and f(x;, 8) is the likelihood function. Then, marginal function is
known as follows:

fex) = Jy f(O)f (xi;6) do (2.12)
The posterior density function for continuous random variables can be written as:
[ 0
FBlx) = L %) (2.13)

Iy’ FO)F (xi:6)d0
Whereas for discrete random variables, the posterior probability density function is given as follows:

y = SO xi0)
fOIx) =525 om (2.14)

3 Result
There are two methods that can be used to see whether a data follows the Weibull distribution, namely by
using a comparison plot log(t) and log(—(log)(S (t)) and Mann Test. A data is called following the

Weibull distribution if log (t) is linear with log (—log(S(t))). Linearity makes it possible to see the
suitability of using the Weibull model through a plot.
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Figure 1. Comparison plot log(t) and log(—log(S(¢t))

Table 1 Estimated parameters of the Cox proportional hazard model for breast
cancer survival data from Hasanuddin University hospital, Makassar, Indonesia
during the period 2015-2018

. Coefficient Standard

Variables ( ﬁj) Error p-value
Age (X,) 0.0203 0.0080 0.0118
Treatment (X,) 0.1516 0.1002 0.1303
Occupation (X3) 0.1396 0.1962 0.4768
Marital Status (X,) 0.3140 0.3572 0.3794
Malignancy (X5) 0.2325 0.1638 0.1554
Hemoglobin levels (Xg) -0.0488 0.1514 0.7470
Stadium (X-) 0.0360 0.0897 0.6883
Histology (Xg) -0.2494 0.1618 0.1231
Leukocyte levels (Xg) -0.0704 0.1985 0.7226

From Figure 1 it can be seen that log(t) and log (— log (S(t))) indicate a linear relationship, this can
be seen with the red dots that spread around the linear line. This shows that the data for patients with
breast cancer followed the Weibull distribution. However, in terms of diagnosing the Weibull distribution
using a plot, it is not an effective because it contains a subjective view in looking at the plot. To ensure
that, the Weibull distribution data can be checked by using statistical procedures, namely the Mann Test.

Table 2. The proportional hazard statistical test result for each independent
variable for breast cancer survival data

Variable Rho Chisq p-value
Age 0.0449 0.2264 0.6342
Treatment -0.0234 0.0939 0.7592
Occupation -0.0544 0.4561 0.4994
Marital status 0.0276 0.1079 0.7425
Malignancy 0.0825 1.1029 0.2936
Hemoglobin level -0.0172 0.0435 0.8347
Stadium -0.0335 0.1772 0.6738
Histology -0.2229 9.3493 0.0022
Leukocyte level 0.2088 6.4235 0.0112

The null hypothesis (Ho) is represented that data is distributed Weibull and vice versa. The value of M
is -1.34 while the F value of the table at the significance level @ = 0.05 with df, = k; = 76 and df, =
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k, = 75 is 1.46. Because the value M = —1.34 < Fj, 9576 75 = 1.46, it was decided that Ho was accepted.
It means that the data used is followed by the Weibull distribution.

The fitting of the Cox proportional hazard model was conducted to find out the relationship between
survival time and variables that affect survival time. The parameter estimates of the Cox proportional
hazard model are obtained in Table 1. Based on Table 1, the Cox proportional hazard model as follows:
h(t,X) = hy(t)exp (0.0203 X; + 0.1516 X, + 0.1396X5 + 0.3140 X, + 0.2325 X5 — 0.0488 X +
0.0360 X, — 0.2494 Xg — 0.0704 X,)

The results of checking the proportional hazard assumption with the schoenfeld residual approach are
given in Table 2. The p-value of histology and leukocyte level less than 0.05, which mean that there is the
correlation between the covariate and the survival time until the patient is declared cured. Therefore, the
histology and leukocyte levels do not meet the assumption of proportional hazard.

The likelihood function for uncensored data is given as follows:

L(t1X;, 8) = (f(t11X1,60)) " (f (L)X, 82)) oo (f tal X, 8))™
B (GEEENE
i=1

The likelihood function for right censored data is as follows:
1- 1— 1-¥n
L(t:1X;, ) = (SalX1,60) 7 (S(t2lX2,82)) % o (SCnlXns 80))
n

= | [scearxns0)™

i=1
Then the full likelihood function for the extended Cox model is as follows:

L(t;1X;,6;) = —[(ati“‘l(exp(ﬁlei + B2 X5 + -+ BoXo; + 85 Xgi + 69Xg;))Y
=1
exp(B1X1; + B2 Xzi + - + BoXo; + 0gXg; + 8oXo;) t;*

The selection of the prior distribution is related to the parameters in the distribution pattern. There are
two ways in determining the prior distribution, namely the informative prior and the non-informative
prior. Prior used in this study is informative prior for each covariate which is followed by the normal
distribution, that is (8~N(u, 62)), (§~N(u,0?)) and a has Gamma distribution, a~T'(1,1).

_ 1 Bi —m)*\ . _
fB) = ai\/ﬁeXp <_Ti2>’l =12,..9

1 6; — .ui)2>
5;) = expl ———,i =89
f(6) T p( 20,2

F(@ = e ()

Assuming y; = 0 and 0;2=100, the prior distribution is obtained for the parameters f;, B2, ..., Bo, 8g, 89 as

follows:
ﬁl
=12,..,9
10\/ ( 200 /1

5%\ .
() = 1()\/Eexp (—ﬁ>,l =89

fB) =




The 3rd International Conference On Science IOP Publishing
Journal of Physics: Conference Series 1341(2019) 092013  doi:10.1088/1742-6596/1341/9/092013

The posterior distribution is expressed by a comparison between the function of joint density and
marginal density function. The joint density function can be written in the form of the likelihood function
and prior distribution. Marginal density function is written by integrating the shape of the likelihood
function and the prior distribution.

A
f(Br 6!“ |ti!Xi) =

S I T [ Ada dBy d, ... dBy dSg dd,

To get the appropriate parameter estimation results, it is necessary to check the convergence of each
parameter. A review of the convergence of each parameter can be seen based on the diagnostic plot of the
results of each parameter. The density, autocorrelation and history plots obtained for age are given in
Figure 2.

beta1 sample: 150000 ) betal
go ' B3
= A g
=ol e \\_..__ e[
< T T T T T g ‘T - T T T
-0.1 -0.05 0.0 0.05 0.1 0 50
beta1 lag
(a). Density plot (b). Autocorrelation Plot
— g I
gof \q PRI VRPN OO R
o
|
(’) 50600 100’000

iteration

(¢). History Plot

Figure 2. Diagnostic plots for Age
Table 3 Summary of posterior estimated parameters breast cancer patients’ survival data
from Hasanuddin University Hospital in Makassar during 2015-2018

Variable Mean 95% Credible Interval (CI)

Age —0.0123 (—0.0350; 0.0086)
Treatment 0.1811 (—0.1018;0.4392)
Occupation —0.2882 (—=0.7617;0.2060)
Marital Status —1.2160 (—2.447;-0.1986)
Malignancy 0.0516 (—=0.2999; 0.3975)
Hemoglobin level —0.1946 (—0.6054; 0.1938)
Stadium 0.0533 (—0.1641;0.2692)
Histology 0.4660 (0.0969; 0.8250)
Histology g(t) —0.6536 (—0.8466; —0.4715)
Leukocyte level —0.3433 (—0.8705; —0.3531)
Leukocyte level g(t) —0.1222 (—0.2301; —0.0228)
Form parameter («) 0.9994 (—=0.2301, —0.0228)
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Figure 2 shows the history plot of each parameter do not perform a pattern or trend and it have
stabilized after running the Markov Chain Monte Carlo (MCMC) algorithm with 150,000 iterations,
discarding as 10,000 as burn-in a. Besides that, it can also be seen that the plot density for each covariate
parameter has been smooth which indicates that the parameters have converged. Moreover, the
autocorrelation plot is truncated only in the first lag and towards a value close to zero. This shows that the
sample obtained in the autocorrelation plot has less than 1 autocorrelation. It means that the algorithm
reaches convergence and the sample is already in the target distribution and autocorrelated.

The posterior estimated summary for each parameter can be seen in Table 3. From Table 3, the
variables that substantial effect the survival time of patients with breast cancer are marital status,
histology, histology time dependent, leukocyte levels, leukocyte levels time-dependent. This can be seen
from the credible intervals of each parameter. These variables do not contain zero in their credible
intervals.

In addition to the covariate, the posterior mean of shape parameter a for the Weibull distribution is

0.9994 with a credible interval (—0.2301; —0.0228). Because of the parameter a does not contain zero
at at a credible interval, the parameter a has an influence on the model.
Based on equation (2.8), the extended cox model is obtained as follows:
h(t, X(t)) = 0.9994 t%9994~1 exp(—1.2160 X, + 0.4660 Xg — 0.6536 Xg g(t) — 0.3433 X,
—0.1222 X, g(1))

From this extended model, it can be seen that the marriage status covariate value has a hazard ratio of
exp (—1.2160) = 0.296, indicating the risk of unmarried patients suffering from breast cancer by
0.296 times than married patients. It can be said that married patients will recover faster than unmarried
patients. For histological variable has a hazard ratio of exp(0.4660 — 0.6536) = 0.829, indicating that
each histological increase will increase the risk of death by 0.829 times. While time-dependent leukocyte
level covariates have a hazard ratio of exp (—0.33433 —0.1222) = 0.628, indicating the risk of
patients who have leukocyte levels < 4300 /ul has a death risk of 0.628 times than patients who has a
leukocyte level of 4300 /ul., 11300 /uL and > 11300 / uL. It means that patients who have leukocyte
levels > 4300/ulL will recover faster.

4 Conclusion

In this paper, the relationship between the breast cancer patients’ survival time and the factors that
influence it have been determined using extended Cox model with Bayesian approach. Based on the
results of the analysis and discussion that has been conducted, the breast cancer patients’ survival times
model has been constructed. The factors that affect substantially the patients’ survival times of breast
cancer in Hasanuddin University Hospital from 2005 to 2018 are marital status, histology, histology time
dependent, leukocyte levels and leukocyte levels time dependent.
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