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Abstract. This article deals with the dynamics of Lotka-Volterra prey predator population. The 

populations are considered as economically valuable stocks and then exploited. There is no 

harvesting when the densities of population are still low and the populations are 

harvested when the threshold value is achieved. The rate of harvesting is assumed to be 

an increased function and bounded. Phase portrait and linearization approach are used to 

analyze the behavior of the populations. There exists one equilibrium point for system 

without harvesting and it is a centre. The trajectories of the population oscillate around 

the stable equilibrium point. It is possible to find one, two, three, or none equilibrium 

points for model with harvesting. From the analysis we found that when the populations 

are not harvested then the equilibrium point becomes a centre. But when the populations 

are harvested with a smaller value, the equilibrium point becomes unstable spiral. When 

the value of harvesting rate is increased, the equilibrium point becomes either stable 

spiral or stable node. When the equilibrium points are unstable, the populations will meet 

a condition where their sizes are smaller than the threshold value and then the populations 

must stop being harvested. 

   

1.  Introduction  

An ecosystem which is inhabited by more than one population, then ecologically there will be interaction 

between these populations. The most common form of interaction is predation, one population acts as a 

predator and the other acts as a prey. The dynamics of the growth rate of prey and predator populations 

based on the Lotka-Volterra system is one popular model in mathematical ecology. A prey predator 

population model in [1] has been studied and found that the prey and predator populations may live 

together for a long time when the frequency of their interaction is reduced.  

The prey predator model has been widely studied in ecology and bioeconomics, see for example in 

[2, 3]. The population as a renewable natural resources and useful stock must be managed properly. A 

prey predator model with harvesting in [4] has been studied and found that it was possible to get 

bioeconomics equilibirium and optimal harvesting. In particular, authors in [5] studied the effect of over 

harvesting and drought on prey predator model and offered a strategy to prevent the population from 

extinction. Some prey predator models with various types of studies in harvesting have been investigated 

by many authors, see [6, 7, 8, 9]. 

In the ecology, the studies of fisheries management in the form of prey predator system with constant 

rate of harvesting were often considered [10]. The populations were harvested when the density of 

populations exceeded a certain value and no harvesting when the density of populations were still low. 
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In particular [11] analyzed a prey predator model with threshold continuous harvesting only for predator 

population. This kind of harvesting strategy is more realistic and beneficial in management of ecology.  

In this article, a prey predator population model with continuous threshold harvesting is studied. The 

model includes one prey and one predator populations that refers to the Lotka-Volterra model. Under 

consideration that the populations are beneficial, then the populations are harvested with continuous 

threshold function. The harvesting function is still bounded above. The populations are harvested when 

their densities are greater than a certain value and no harvesting when the size of populations are still 

small. The existence and stability of interior equilibrium points of the model, with and without 

harvesting, are analyzed. This is important to know whether the populations will become extinct if the 

populations are harvested with threshold harvesting function. Phase portrait and linearization method 

are used to analyse the effect of harvesting. 

2.  The prey predator system without harvesting  

Rosenzweig-MacArthur population model is given in the form of   

.)(

)(1

cyyx
dt

dy

yx
K

x
rx

dt

dx











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



                                                         (1) 

Variable )(txx  denotes the size of prey population and )(tyy  denotes the size of predator 

population. Parameter r, K, γ, and c are assumed to be positive. Function )(x  is well known as a 

predation response function for predator to the prey population. Such as functions have several types, 

for example response function Holling type I, type II, type III, and type IV. The response function 

Holling type I is given as .)( xx    When the Holling type I is applied to the model (1), the model is 

reduced to the form of 

.

2

cyxy
dt
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xybxrx
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


                                                               (2) 

 In this article, we assume that the value of b is zero. Therefore the growth rate of prey population is 

assumed to grow exponentially when there is no interaction with predator population. Under this 

assumption, the model (2) is then reduced to the form of  

.cyxy
dt

dy

xyrx
dt

dx








                                                                  (3) 

 The nonnegative equilibrium points of model (3) are  0,0  and 











rc
E ,0 . It is easy to check 

using phase portrait analyses that the equilibrium point  0,0  is unstable saddle point. The equilibrium 

point 0E  is stable and it is a centre. The trajectories around the equilibrium point 0E  form closed orbit. 

Furthermore, the equilibrium point 0E  is also globally stable in the first quadrant [12]. 

 

Example 1. Suppose that the parameter values for model (3) are given as ,5.0r  ,0042.0  ,52.0c

and 004.0  with appropriate units. It gives an interior equilibrium point 

 0476.119,130,0 











rc
E  and eigenvalues associates with this equilibrium point are i50990.0 . 

This means that the equilibrium point is stable centre. Plot of some trajectories around the equilibrium 

point are given in figure 1. 
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Figure 1.  Some trajectories around the equilibrium point  0476.119,1300 E . 

3.  The prey predator system with threshold harvesting function  

The common harvesting functions used in population dynamics are harvesting at constant rate and 

harvesting with constant effort. We consider a continuous threshold harvesting in the dynamics of prey 

predator model as proposed in [13, 14], that is  

 
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




TN
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 if,

 if,0

)(                                                (4) 

 

 
Figure 2. Graph of threshold harvesting function )(NH . 

 
Harvesting function in figure 2 ecologically states that when the population size (N) is still low or 

less than a certain minimum value of the population which is allowed to be exploited, then the population 

is not harvested. But when the population size exceeds the minimum value, the population is harvested 

with the rate of harvesting following the increasing function and limited above when the population size 

is too large. Parameter h denotes the maximum value of harvesting rate and the parameter T denotes the 

threshold value of population that is allowed to be harvested.  

The harvesting function (4) is more realistic than the harvesting function with constant rate and the 

constant effort of harvesting. In harvesting with constant rate, the size of harvested population per unit 

of time is constant and this is not relevant when the size of population is too low. In harvesting with 

constant effort, the rate of harvesting is proportional to the size of population and this is not relevant 

when the size of population is too large.  

Under consideration that the dynamics of prey predator population in model (3) is useful for man, 

the two populations are then harvested following the threshold harvesting function (4). The considered 

prey predator model with threshold harvesting for both populations is as follows  

,)(

)(

yHcyxy
dt

dy

xHxyrx
dt

dx


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


                                                          (5) 

where  
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 Under conditions Tx   and Ty  , the equilibrium points and their stability of model (5) are the 

same with the model (3). In the case of Tx   and Ty   and the value of parameter h  is too small ( h  

tends to zero), the equilibrium point   yxE ,1  for model (5) tends to the equilibrium point 

.,0 











rc
E In this article, we focus on the case of Tx   and Ty  . 

The interior equilibrium points for model (5) are found by solving the system of equations  0dtdx  

and 0dtdy  in x and y simultaneously.  The considered equilibrium point must satisfy the conditions 

Tx   and .Ty   From the simple isocline 0dtdx , it follows 
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 From the simple isocline 0dtdy , it follows 
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Further, the interior equilibrium points are found by solving the equations (6) and (7) which respects to 

x and y simultaneously.   

 

           
                                               (a)                                                     (b) 

Figure 3. Simple isoclines (a) for 0dtdx  and (b) for 0dtdy . 
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 From the simple isoclines, figure 3 (a) and (b), the equilibrium points are the intersection of the two 

isoclines. It is easy to see that it is possible to get one, two, three, or none equilibrium points and it must 

satisfy the conditions Tx   and .Ty   The Jacobian matrix from the model (5) is written as   








 


43

21

PP

PP
J  , 

where  
 

 21
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1

1
1
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h
yrP
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2

2

2
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Tyh
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cxP
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



  . It is clear that 2P  and 3P  are always positive. The 

characteristic equation associates with the Jacobian matrix is given by  

            0detdet
43

21 
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
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
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PP

PP
JIf




 . 

Further, we get   0)(det)(2  JJtrf  , where 41)( PPJtr   and 3241)(det PPPPJ  . From 

the characteristic equation we get the eigenvalues 
2

)(
2,1




Jtr
 , where   .)(det4)(

2
JJtr   

The stability criteria of the equilibrium point   yx ,  for model (5) are as follow.  

1. If 0 , 0)(det J , and 0)( Jtr , then both eigenvalues are real, negative, and different. The 

equilibrium point   yx ,  is asymptotically stable, it is a node. 

2. If 0 , 0)(det J , and 0)( Jtr , then both eigenvalues are real and opposite signs. The 

equilibrium point   yx ,  is unstable, it is a saddle point. 

3. If 0  and 0)( Jtr , then both eigenvalues are complex number with positive real part. The 

equilibrium point   yx ,  is unstable spiral point. 

4. If 0  and 0)(det J , then both eigenvalues are complex number with negative real part. The 

equilibrium point   yx ,  is asymptotically stable, it is stable spiral point 

5. If 0  and 0)( Jtr , then both eigenvalues are complex number with zero real part. The 

equilibrium point   yx ,  is neutrally stable, it is a centre. 

 

Example 2. Suppose that the parameter values for model (5) are given as 5.0r , 52.0 , 52.0c , 

5.0 , and 5.0T  with appropriate units. The values of 1h  and 2h  will be given in various values. 

The equilibrium point, eigenvalues, and stability associates with the values of  1h  and 2h  are given in 

table 1 below.  

 

Table 1. Existence, eigenvalues, and stability of the equilibrium point. 

No. Values of 1h  and 2h  Equilibrium Point Eigenvalues Stability 

1. 01 h , 02 h   9615.0,0400.1   i50990.0  neutrally stable, 

centre 

2. 02.01 h , 02.02 h   9272.0,0812.1  i51052.001769.0   unstable, spiral 

3. 2.01 h , 2.02 h   7289.0,3329.1  i49659.000622.0   unstable, spiral 

4. 35.01 h , 35.02 h   6016.0,3018.1  i35207.018745.0   
asymptotically 

stable, spiral 
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5. 4.01 h , 4.02 h   5557.0,2159.1  i17111.030004.0   
asymptotically 

stable, spiral 

6. 4122.01 h , 4122.02 h   5441.0,1864.1  i00661.033332.0   
asymptotically 

stable, spiral 

7. 
41225.01 h , 

41225.02 h  
 5440.0,1863.1  32449.0 , 34243.0  

asymptotically 

stable, node 

8. 43.01 h , 43.02 h   5274.0,1378.1  17177.0 , 59942.0  
asymptotically 

stable, node 

9. 5.01 h , 5.02 h   4816.0,9606.0  
The equilibrium point does not satisfy 

the conditions  Tx   and Ty   

  

 

From table 1 we know that when the values of 01 h  and 02 h , the equilibrium point  

   9615.0,0400.1,  yx  is the same with the equilibrium point  9615.0,0400.1,0 











rc
E  for 

model without harvesting. When the values of 1h  and 2h  are too small ( ,02.01 h 02.02 h ), the 

equilibrium point changes slightly and becomes unstable spiral. But when the values of 1h  and 2h  are 

increased ( ,35.01 h 35.02 h ), the equilibrium point also changes and becomes an asymptotically 

stable spiral point. There exists stability switches from neutrally stable to unstable spiral and again to 

asymptotically stable spiral point. There is a change in the real part of complex eigenvalues from positive 

becomes negative. Therefore, there exists a certain values of 1h  and 2h  so that the real part of complex 

eigenvalues becomes zero.  

When the values of 1h  and 2h  are increased again ( ,4122.01 h 4122.02 h ), the equilibrium point 

remains asymptotically stable spiral point with real part of the eigenvalues is close to zero. But when 

the values of 1h  and 2h  are increased again ( ,41225.01 h  41225.02 h ), the equilibrium point 

becomes stable node, the eigenvalues are real with opposite the signs. Further, when the values of 1h  

and 2h  are increased again ( ,5.01 h  5.02 h ), the equilibrium point does not exist anymore because 

it does not satisfy the conditions Tx   and .Ty   The effect of changing the values of 1h  and 2h  and 

its stability through examining the real part of the eigenvalue is given in figure 4 below. 

 

 
 

Figure 4. The effect of changing the values of 1h  and 2h  and stability of the equilibrium point.  
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Example 3. Suppose that the parameter values for model (5) are given as 5.0r , 0052.0 , ,52.0c

005.0 , and 10T  with appropriate units. Suppose also that the values of 1001 h  and 1022 h . 

The model has two interior equilibrium points, namely  6018.10,2866.1151 E  with eigenvalues are 

17897.0  and 90326.0 , and the other equilibrium point  8232.36,3520.2192 E  with eigenvalues 

are i44029.007693.0  . The two equilibrium points are not stable. Plot of trajectories of populations 

around the equilibrium point 1E  and 2E  are given in figure 5.  In this case, when the trajectories achieve 

the population size 10)( tx  or 10)( ty , then the two populations will stop being harvested.  

 

 
    Figure 5.  Behavior of the trajectories around the unstable equilibrium points. 

 

4. Conclusions  

There exists one interior equilibrium point for the prey predator model without harvesting. The 

equilibrium point is neutrally stable. The prey and predator populations oscillate harmonically around 

the equilibrium point and they can live together for a long time.   

 In the prey predator model with continuous threshold harvesting for both populations, it is possible 

to have one, two, three, or none interior equilibrium points.  The existence of the equilibrium points 

depend on the values of parameter model, harvesting rate, and threshold value.  The increasing values 

of 1h  and 2h  may change the stability of the equilibrium point, from neutrally stable to unstable spiral 

to neutrally stable again to asymptotically stable spiral to asymptotically stable node. The equilibrium 

point may not exist when the values of 1h  and 2h are increased too high.  

 There exists a condition for the harvested prey predator model has two interior equilibrium points 

where the two equilibrium points are not stable, one is a saddle point and the other is an unstable spiral 

point. In this case the size of populations at a certain time will be less than the value of threshold 

harvesting. At that time the populations will stop being harvested. 
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