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Abstract. A comprehensive survey of face alignment using different methods is presented in
this paper. Face alignment is the fundamental task of facial applications, e.g., face recognition,
3D face modelling and face expression analysis, etc. State-of-the-art methods can be mainly
categorized into the three groups: gradient descent-based, deep learning-based, and 3D model-
based. In gradient descent-based methods, landmarks are localized and adjusted by solving a
nonlinear regression function. Deep learning-based methods construct one or several cascaded
neural networks to improve landmark localization accuracy. Beside the above two categories of
methods solving problems on a 2D plane, there is also other category of methods like 3D
model-based methods. Despite significant progress that has been made, face alignment faces
challenges from real-world conditions: variation across poses, genders and ages, facial
expressions, and facial attributes. This paper offers a brief illustration and analysis of several
typical methods of face alignment, provides an overall understanding and insight into the field,
which will motivate us to explore promising future directions.

1. Introduction

Facial landmarks, also known as facial key points or facial feature points, are mainly located around
facial components such as eyes, mouth, nose and chin. When the faces in the images are detected by
the face detectors, face alignment or facial landmark detection are then applied to locate these facial
landmarks as shown in Figure 1. Based on these landmarks with semantic meaning, we can obtain
huge amount of corresponding shape and texture information of original face images for most facial
applications, e.g., face verification [1] and recognition [2], expression recognition [3], facial
attribution analysis [4], and solution to other computer vision problems. Therefore, face alignment is a
fundamental and important task for facial analysis applications.

In Figure 1, the black rectangle is the detected bounding box and the white points are the detected
landmarks. The white points can be gathered as a set and be concatenated to represent shape x =
{(x1,¥1), (x2,¥2),+, (xn,yn)} ( N is the number of landmarks , N equals 68 in Figure 1),
where(x;, y;) denotes the coordinate of the i — th point. Many public datasets, like 300-W [5], AFLW
[6], are used to train present face alignment algorithms. These datasets are usually split into two
subsets, training set and test set. In most occasions, the landmarks of face images in these datasets are
manually labelled as the true value or ground truth. In general, the proposed algorithms are first
trained on the training subset, then trained models are tested on the test subset. The goal of face
alignment algorithms is to achieve performance in these datasets as good as possible.
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Figure 1. Detected face and 68 facial landmarks

Face alignment generally consists of two phases, training phase and test phase. In the training
phase, a model is learned from given labelled training data; in the testing phase, the model is applied
to locate facial landmarks of input testing image. Usually, the process starts with a coarse initial shape
or the whole image, and simultaneously produce better landmarks output until convergence [7].

Face alignment faces many challenges arising from two categories of deformations: rigid and non-
rigid. Rigid deformations are mainly caused by issues of camera, like rotation, scaling, illumination or
translation. In contrast, the non-rigid is mainly caused by various facial expression or facial attributes.

According to the method of modelling landmarks and calculating landmark locations, existing face
alignment methods can be grouped into three sorts: gradient descent-based methods, deep learning-
based methods, and 3D model-based methods.

Gradient descent-based methods are based on the thought of mathematical optimization. Many
problems involving face alignment can be treated as nonlinear optimization problems. The goal of
gradient descent-based methods is to learn a sequence of descent directions and re-scaling factors of
each iteration step. Usually as first, an initial shape is put into the bounding box and then local patches
are cropped from the original images and the features like SIFT [8], HoG [9] are extracted to train the
models. The models in the current iterations can produce a new shape and new features can be
extracted based on this shape. Such sequence produces a series of updates beginning from the initial
shape X, and converges to final predicted shape X in training data.

Deep learning-based methods utilize neural networks to detect facial landmarks, like convolutional
neural networks (CNN) or recurrent neural networks (RNN). The algorithms usually take the whole
image as the input and features are extracted from the input by networks. Meanwhile, some models are
constructed by multiple levels, called cascaded networks, each containing more than one neural
network. Subsequent level takes processed output of prior level as input. The networks get shallower
in latter levels, leading to the convergence of landmark prediction. Deep learning-based methods can
be subdivided according to network structures and algorithm features, namely, CNN-based methods,
cascaded CNN-based methods, MDM/RNN-based methods, multi-task learning-based, etc.

Both gradient descent-based methods and deep learning-based methods focus on a 2D plane. 3D
model-based methods are also studied and applied under certain circumstances [10][11]. They can
overcome difficulty of face alignment on faces over large poses by converting image into the
projection of rotated 3D face model on image plane. With the model normalized and all its vertexes
coordinated, we can set up objective function to minimize vertex distances between the face obtained
by fitting and the ground truth. Some 3D model-based methods also provide ways of generating
training data from public datasets of 2D images, which is crucial for model training.

2. Gradient descent-based methods

Gradient descent-based methods fit an image for the target shape by objective function optimizing,
which creates a sequence of updates and finally converge around the ground truth result. Gradient
descent-based methods focus on mathematical calculation, in which problems, such as face landmark
detection, optical flow, or camera calibration, are treated as continuous nonlinear optimization
problems.
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2.1. Supervised Descent Method (SDM)

For a given image d € R™*! consisting of m pixels, d(x) € R¥N*! are the N landmarks to be extracted
in the image. f is a non-linear feature extraction function (e.g., SIFT), and f(d(x)) € R*28N>1 if
extracts SIFT features. During descent training, the correct N landmarks are referred to as x,. In the
testing condition, the initial shape is first put on the input image and the trained landmark detector is
used to detect landmarks.

At first step, the algorithm is not likely to converge, so the SDM produces a sequence of updates
along the gradient directions, each update can be viewed as a step of iteration of former landmark
situation.

X = Xg—1 + Rg—1$Pp—1 + b1, )

Axy = Ry—1¢p—1 + b1 (2

where ¢y_1 = f(d(xk_1)) is the feature vector at former landmark position, x,_;. During training

process, generic descent directions {R;, } and bias terms {b;} are learned for obtaining the shape residual

Axy. In the last iteration, we add Axy with the predicted shape to produce new shape of current
iteration. The initial shape will converge to ground-truth through a sequence of iteration.

R, and b, can be learned using regression. Calculation of R;, and b, can be converted to solving
linear least squares problem:

argming, p, Xgi lei{”Axf‘ — R i — bk”Z- 3

Though the linear regressor and feature extraction of SDM origin from Newton’s method, SDM

surpasses original gradient boosting formulation as its feature extraction is not strong. Meanwhile, there

are several steps in SDM (usually 4 to 5 steps in practice) instead of one, leading to higher performance
than the original method.

2.2. Initialization Optimization Method

An initial shape is always required by traditional gradient-based methods and poor initialization often
trap these methods in low level local optima. Meanwhile, traditional methods also suffer from low
robustness when coping with large pose variations. Coarse-to-fine shape searching method propose a
solution to such problems [12].

Coarse-to-fine shape searching method [13] performs a coarse searching at low levels and provide
sub-regions for subsequent finer stages to work on. This method encompasses a number of prospect
shapes instead of one at each level and simultaneously discards unpromising results at following level
to avoid local optima. Subsequent levels shrink the region and converge it to estimate the final region.
In practice, about three levels are required.

3. Deep learning-based methods
Deep learning-based methods mainly use neural networks, including Convolutional Neural Networks
(CNN) and Recurrent Neural Networks (RNN), to detect facial landmarks. Multiple levels of networks,
which called cascaded networks, are used for construction of some models. Deep learning-based
methods usually take the whole image as the input of first level, and subsequent levels of cascaded
networks will take processed output of prior levels as input [14]. Network containing several different
networks can reduce the variance by average the prediction. A cascaded network deploys large but
coarse networks at low levels to estimate facial landmarks with few large errors, and shallow but fine
networks at high levels for restricted adjustment on previous prediction.

In face alignment, deep learning-based methods can be further subdivided into several subclasses:
cascaded CNN-based methods, MDM/RNN-based methods, multi-task learning-based, etc.

3.1. Cascaded Convolutional Networks

Cascaded convolutional networks focus on structure design and development of individual networks
and their strategies. Several levels of networks with different parameters are contained in a single
cascaded convolutional network for coarse-to-fine face alignment [15]. Figure 2. shows how several
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networks work parallelly in the same level along with the inheritance and convergence of landmark
prediction.
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Figure 2. Three-level cascaded convolutional networks. [15]

Cascaded convolutional networks use first level to make initial estimation of facial landmarks from
large input regions, this requires first level to be deep and with high non-linearity to form high-level
features. Rectified Linear Unit (ReLU) function is crucial to such deep networks as they improve
performance by replacing negative values with zero, thus increase non-linear properties. Other

functions, like sigmoid function o(x) = 1;_,‘ and hyperbolic tangent tan h(x) and |tanh(x)| can

also increase non-linearity. Performance of convolutional level can be further improved by neurons
locally sharing weights on the same map.

One effective way of combining multiple convolutional networks together is multi-level regression.
As the only knowledge for first level is the face bounding box, the input regions must be large to cover
possible predictions. Subsequent levels are based on a smaller region around the prediction of prior
level as to reduce disruption. Consider the inaccuracy of first level and possible drift of latter levels,
we express the final prediction for a cascade consisting of n levels at first level with [; predictions at

level i as
n - B
(€} 1 ® 0]
X+t Axy e+ Axy,
x=2""""h 4 E T (4)
1y I
i=2

3.2. Mnemonic Descent Method

For traditional cascaded convolutional networks, parameter and output of each cascade step are learnt
independently, so correlations between semantically related image characteristics are not taken into
account. Also, cascaded convolutional networks are usually based in non-optimal hand-crafted
features and cannot train end-to-end convolutional features. Mnemonic Descent Method (MDM) is
proposed to cope with such issues.

Different from CNN, which has all convolutional steps independent and ignores much information,
MDM uses a Recurrent Neural Network (RNN) to lay mnemonic constraint on the directions of
descent, similar to SDM. MDM s trained in an end-to-end way, starting from the raw image pixels
and end at the final predictions.

The memory of MDM is to preserve and facilitate output of the former level, which can be
combined as descend gradient into next level. The fundamental equation of RNN is shown as

hk+1) — fr(z(k),h(k); gr) (5)

MDM can provide a sequence of descent directions on a given initial rough estimation, iteratively
lead to the optimum. At each step k, internal state is updated by the mnemonic module part of the
neural network, according to the energy landscape z). During training, the network updates shape
displacements at current step through projecting mnemonic element of the algorithm onto the hidden-
to-output matrix W, € R**%. The new time-step can be shown as
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Ax®+D) = 5 4y p® (6)

x®+1D) = () 4 g (k+1) 7)

The hidden state of the network, which is often ignored by traditional methods, enables MDM to

choose a better descent path by considering the relation of characters. We then repeat the process for a
number of times. At last, the objective function of MDM can be presented as

ming ||X —XO 4+ 3T W,H® ||i (8)

Where H(k) = [hgk), ---,h,(ik)] € R“*™ represents the matrix of all states and 6 all the parameters
of the model.

3.3. Multi-Task Learning-Based Method

In practice, there are non-negligible correlation among facial landmarks and other facial attributes, like
expression and head pose. To exploit this correlation, multi-task learning (MTL) is applied to tackle
face alignment task and other facial tasks. Specifically, facial landmark detection is set as the main
task and combined with other heterogeneous but related tasks, for example. expression estimation and
facial attribute interference. Such models are formulated to facilitate learning converge and deal with
different learning difficulties.

Zhanpeng Zhang et al build Tasks-Constrained Deep Convolutional Network (TCDCN) [16] using
multi-task learning-based method. There are four tasks related with face alignment in TCDCN,
namely, head pose estimation, gender classification, facial expression recognition and facial attribute
inference.

A deep convolutional neural network (CNN) is adopted in such method to jointly learn the share
feature space x, DCN gradually projects the given face image x, to higher level representation by
learning a sequence of non-linear mappings. TCDCN uses almost the same structure as DCN during
feature extraction, thus, a shared feature vector is provided for multiple tasks in estimation stage.

When it comes to estimation, traditional MTL focus on maximizing the performance of all tasks
together, while TCDCN focuses only on main task of face alignment. So, the objective function can be
formulated as

argminyr yay,, Y=o I (VE £ O WD) + ZKZ3 Baea A1 (v f (s W) 9)

Where 1% denotes the coefficient of importance of a — th task’s error. Different types of loss
functions can be optimized together using this function, e.g., regression of landmarks and
classification of expressions can be combined.

A task-wise early stop mechanism is introduced to TCDCN in order to prevent being trapped by
auxiliary tasks at bad or sub-optimal local optima. Easy tasks that are no longer beneficial after
quickly reaching peak performances will be discarded from the iteration process.

4. 3D model-based methods
All methods presented above are based on processing on a 2D plane, assuming that face aligned are in
small to medium pose (below 45°) towards the camera. Face alignment in large poses up to 90° faces
several hurdles, e.g. occlusion of face and invisibility of landmarks, varies of face appearance and
more challenging manual landmark labelling. 3D model-based methods solve such problems by
introducing 3D Dense Face Alignment (3DDFA) [17] and using 3D Morphable Models (3DMM) and
projection to ‘normalize’ the face in large pose.

3DMM describes the face in large pose as the rotation, translation and shape appearance of a mean
shape face:

S =S5+ Asaq + Aqa,, (10)

Where S is the 3D face obtained with pose and expression, S denotes the mean face shape, A and
A, means offsets of face shape and face expression from neutral shape, a; and a, mean shape and
expression parameters.
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The 3DMM is then projected onto image plane with weak prospective projection, model
construction and projection function V (p) is shown as:
Vip) =f*Op*Rx (§+ Asag + Aca,) + tag, (11)
Where f is the scale factor, Op is the orthographic projection matrix, R is the rotation matrix of
image containing movement in three directions, namely, pinch, yaw, roll, and t,, is the translation
factors. The collection of parameters is presented p = [f, pitch, yaw,roll, t,4, ag, a,]’.
3DDFA introduces Projected Normalized Coordinate Code (PNCC), which is a normalized
parameter obtained by normalization and projection of input image and provides locations of 3D
vertexes on 2D plane. Input image is then stacked with PNCC and transferred to CNN.
CNN is trained to make predictions of parameter update Ap*:
4p* = Net* (1,PNCC(p")) (12)
Weighted Parameter Distance Cost (WPDC) is introduced to model, reflecting the importance of
each parameter in cost function as influence of each dimension on 3DDFA output is generally
different.
3D model-based methods offer a brand-new method of handling large pose face image alignment,
which is very difficult for traditional face alignment methods focusing on frontal face. Also, they are
proved to be generally as good as common CNN in when dealing with images of small poses.
However, the computation cost is relatively high due to 3D transformation.

5. Evaluations

5.1. Databases

There are many public datasets available for face alignment. These datasets have their ground-truth
facial landmarks labelled manually or through crowdsourcing. Each face image is individually labelled
by several workers or through several methods and weighted average of label results is taken as the
ground truth landmarks.

Face databases can be classified into two categories: dataset of controlled conditions, which are
arranged and taken under designed experimental settings, and datasets of uncontrolled conditions (i.e.
in the wild), which are generally collected from websites or public social medias.

Two popular datasets used in evaluation are 300-W dataset and AFLW dataset.

300-W dataset [5]: This dataset contains multiple alignment databases including AFW, LFPW,
HELEN and XM2VTS. The 68 re-annotated landmarks of the “300 Face in-the Wild Challenge” (300-
W dataset) were seen as the ground truth for images in LFPW and HELEN. The 300-W dataset
provides each image with a prescribed face bounding box, meaning that no external face detectors are
needed and no faces are missed. HELEN dataset contains 2000 training and 330 test images,
evaluations can be conducted on 194 points and 68/49 points. LFPW dataset contains 1132 training
and 300 test images with poses and face expressions, evaluations can be performed on 68/49 points,
while some image links are not available, usually only about 800 training and 250 testing images of
LFPW can be used.

AFLW dataset [6]: This dataset contains 21080 more challenging in-the-wild faces with large-
poses ( with a yaw from -900 909 and each is annotated with no more than 21 visible landmarks,
which is suitable for evaluating alignment performance over large poses.

5.2. Comparisons and Discussions

The distance between estimated landmarks and ground truth landmarks which is normalized according
to the number of landmarks and inter-ocular distance (named normalized mean error, NME, in the
following test) is commonly used for evaluating a face alignment system as shown in (13):

P o

NME = Nxde

X 100%, (13)
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Where d;, denotes the inter-ocular distance, x(ei) IS the i — th estimated landmark and xg.) is the

ground truth of the i — th estimated landmark. Meanwhile, failure rate is also used as measurement of
face alignment quality due to the variations in error normalization to avoid biases of NME. Calculation
of failure rate manually defines a threshold. Point-to-point error exceeding the threshold is considered
a failure. Failure rate is thus expressed as the ratio of failure point numbers to total point numbers.

Comparisons is made to illustrate the various characteristics of various methods. Six representative
models are chosen for study: SDM-Regression (Xiong and De la Torre, 2013) [18], CCN-DL (Sun et
al, 2013) [15], TCDCN (Zhang et al, 2014) [16], MDM (Trigeorgis et al) [19], CFSS (Zhu et al, 2015)
[13] and 3DDFA (Zhu et al) [17].

We localize models mostly in two databases, 300-W dataset and AFLW dataset, several other
datasets are used for extra difficulty of certain aspects. Some datasets were merged, extracted or
expanded from original sets for training and testing for model preference during performance
evaluations of different methods.

Normalized mean error (NME) reflects the deviance between detected position and ground truth.
Table 1 implies the normalized mean error of SDM under different circumstances.

Table 1. NME of SDM in different situations

Dataset Training  Number of NME (%)
Set Landmarks
LFPW LFPW 17 3.47
(300-W) (300-W)

LFW LFW 66 2.70
AFLW 300-W 21 6.10
AFLW 300-W-LP 21 2.45

AFLW2000-3D 300-W 68 7.23
AFLW?2000-3D  300-W-LP 68 3.21

SDM continuously shows low NME when trained with and perform face alignment on different
datasets. The performance of SDM is dependent on the difficulty of datasets, e.g., the pose of faces
and image quality, and number of landmarks. Due to the stability and generality of SDM, it’s
frequently used as control group in study of other models.

Figure 3 shows the NME performance of CNN-DL (Sun et al, 2013) based on LFPW dataset. Only
five characteristic points, namely, the centres of two pupils, the nose tip and two mouth corners, are
detected using CNN-DL. As the output shows, CNN-DL displays significantly lower NME in
detection of these landmarks.

Average errors on LFPW

15
M Liang et al.

12
M Valstar et al.
Luxand
M Microsoft
0 CNN-DL
LE RE N LM RM

Figure 3. The comparison results on five landmarks respectively [15]

Table 2 presents the failure rate of MDM, CFSS, when training under 300-W dataset. Generally,
MDM shows similar or slightly lower failure rate than CFSS. Failure rate goes higher when there are
more landmarks need to be localized.

(=] (Y=}

average error (%)
w
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Table 2. Comparison of failure rate of MDM and CFSS

Model Number of Failure Rate (%)
Landmarks

MDM 51 4.2

MDM 68 6.8

CFSS 51 7.8

CFSS 68 12.3

Table 3 shows the comparison of NME of SDM, 3DDFA and a method combining 3DDFA and
SDM. As AFLW is a dataset more challenging than 300-W, containing images of larger pose and
other factors interfering face alignment, 3DDFA outperforms SDM in NME. While the combination of
both methods achieves better performance measured by mean error, indicating that the combination of
two or multiple methods may further boost localization accuracy.

Table 3. Performance of SDM, 3DDFA and collaborating method on large pose images.

Model Dataset Training Set Number of NME (%)
Landmarks
SDM AFLW 300-W 21 6.10
SDM AFLW 300-W-LP 21 2.45
SDM AFLW2000-3D  300-W 68 7.23
SDM AFLW2000-3D  300-W-LP 68 3.21
3DDFA AFLW AFLW 21 0.99
3DDFA AFLW2000-3D  AFLW2000-3D 68 2.21
3DDFA+SDM AFLW AFLW 21 0.92
3DDFA+SDM AFLW2000-3D  AFLW2000-3D 68 1.97

6. Conclusion

This paper provides a survey of current face alignment methods, including gradient descent-based
methods, deep learning-based methods and 3D model-based methods. The above methods are mostly
constructed based on deep learning, which achieves a great enhancement in computer vision filed
besides face alignment. Although the state-of-the-art methods have achieved comparable performance
to humans on some databases, challenges still exist in aligning face under difficult illumination,
occlusion or large shape variation conditions. Moreover, most existing datasets are composed of
frontal or near frontal face images. The need for high-performance and practical face alignment calls
for further breakthrough in the development of new face alignment methods and establishment of new
datasets for method training.
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