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Abstract. In this paper, we studied some consensus algorithms for the collective rotating
motions of a team of agents, which has been widely studied in different disciplines ranging
from physics, networks and engineering. Both discrete and continues consensus algorithm
with processing delays are investigated. There are three motion patterns determined by
the information exchange topology of systems and rotation angle of rotation matrices. The
asymptotic consensus appears when 0 is an simple eigenvalue of Laplacian matrix and the
rotation angle is less than the critical value, and the rotating consensus achieves when the
rotation angle is equal to the critical value. At this point, all agents move on circular orbits
and the relative radii of orbits are equal to the relative magnitudes of the components of a right
eigenvector associated with 0 eigenvalue of the non-symmetric Laplacian matrix. Finally, all
agents move along logarithmic spiral curves with a fixed center when the rotation angle is larger
than the critical value.

1. Introduction
As we know, a multi-agent systems consists of a number of agents who communicate with
each other via some pairwise links and aims to accomplish various control objectives by local
interactions of designated agents. The consensus problems derive from all agents eventually reach
an agreement of interest generally determined by their initial stats, first appear in distributed
computation and automata theory in computer science [1]. It is important to understand
the way these subsystems manage to accomplish a collective behaviour, as such phenomena
are observed in nature. These collective behaviours such as flocking, herding, and schooling
have been observed in many self-organized systems including fish swimming in schools, birds
flying in flocks for the purpose of enhancing the foraging success, and the flight guidance in
honeybee swarms. See, for example, Vicsek, Czirok, Ben-Jacob, Cohen, and Shochet[2]; Vicsek
[3]; Strogatz [4]; Couzin, Krause, Franks and Levin(2005)[5].

Many models have been introduced to appraise the emergence of consensus. Representative
examples can be found in [6],[7] and [8]. The standard models for consensus dynamics in social,
biological, and physical sciences assume that the dependence of aij decreases as a function of
|xi−xj |, where xi may account for opinion, position, velocity, or other attributes of agent i. For
example, Motsch [9] considered the form aij = φ(|xi−xj |), where φ(·) is a compactly supported
influence function which is increasing over its support.
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The starting point for our discussion is a continuous framework with delay effects,
which embeds both processing delay and transmission delay describing consensus dynamics.
Mathematically, we consider the discrete evolution of N agents, xi denotes the opinion of ith
agent, and each agent adjusts its opinion according to the opinion of its neighbors:

d

dt
xi(t) = ε

∑
j 6=i

aijC(xj(t− τT − τP )− xi(t− τP )), i = 1, 2, · · · , N, (1)

where xi ∈ R3, aij ≥ 0 are constants for all i, j; C denotes the 3 × 3 rotating matrices. τP is
processing delay (i.e., the time it takes agents to process the packet data), and τT is transmission
delay (i.e., the amount of time required to push the information from one agent to another).
In general, it costs more time for an agent to process information than to transmit it. That is,
τP > τT . To normalize the processing delay, set t = τP s, yi(s) = xi(τP s), we have

d

ds
yi(s) =

d

dt
xi(τP s)× τP = ετP

∑
j 6=i

aijC[xj(τP s− τT − τP )− xi(τP s− τP )]

= ετP
∑
j 6=i

aijC[yj(s− 1− τT
τP

)− yi(s− 1)].

Then the corresponding discretization equation with unit step size is given by following

Ri(n+ 1) = Ri(n) + ετP
∑
j 6=i

aijC[Rj(n− 1− τT
τP

)−Ri(n− 1)), (2)

where i = 1, 2, · · · , N,Ri(n) = (r1i(n), r2i(n), r3i(n)), n = 1, 2, · · ·.
In this work, we ignore the effects of transmission delay and consider the effects of processing

delay. To this end, let τP = τ and τT = 0 in (2), then we obtain the following first-order
difference system with processing delay:

Ri(n+ 1) = Ri(n) + ετ
∑
j 6=i

aijC(Rj(n− 1)−Ri(n− 1)), i = 1, 2, · · · , N, (3)

equipping with the initial value Ri(0) = R0
i and Ri(1) = R1

i .
Letting A = (ai,j)N×N and D = diag(d1, d2, · · · , dN ), then L = (li,j)N×N = I − D−1A is

the Laplacian matrix of the system (3). Also, a weighted adjacency matrix A introduces to a
directed graph G. In order to establish the consensus criteria with the processing delay effects,
we list the following three lemmas:

Lemma 1.1 [10] Let L be the Laplacian matrix of the directed graph G. Then −L has a simple
zero eigenvalue and all other eigenvalues have negative real parts if and only if G has a directed
spanning tree. let µi is eigenvalue of L for i = 1, 2, · · · , N , µ1 = 0, Moreover, 0 is an eigenvalue
of L with an associated right eigenvector 1N , left eigenvector p(nonnegative vector) satisfying
L1N = 0N×1, p

TL = 01×N and pT1N = 1.

Lemma 1.2 [11] Given a rotation matrix C ∈ R3×3. Let ~a = [a1, a2, a3]
T be a unit vector in

the direction of rotation and let θ ∈ (0, 2π) be the rotation angle. Then eigenvalues of C are
c1 = 1, c2 = ejθ, c3 = e−jθ. If a2, a3 not all zero, then we may choose the right eigenvectors
of C to be %1 = ~a, %2 = [a22 + a23,−a1a2 + a3j,−a1a3 − a2j]

T , %3 = %̄2, left eigenvectors is
ρ1 = %1, ρ2 = %̄2/|%2|2, ρ3 = %̄3/|%3|2, where j =

√
−1 is the imaginary unit , ·̄ is the conjugate

of a complex number. Moreover, %Tl ρl = 1, l = 1, 2, 3.

Lemma 1.3 [12],[13] Suppose that U ∈ Rp×p, V ∈ Rq×q, U has the eigenvalues βi with
associated eigenvectors fi ∈ Cp, i = 1, · · · , p,and V has the eigenvalues αj with associated
eigenvectors gi ∈ Cq, i = 1, · · · , q, then the pq eigenvalues of U ⊗ V are βiαj with associated
eigenvectors of fi ⊗ gi,i = 1, · · · , p, j = 1, · · · , q.
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2. Consensus in discrete system with processing delay
In this section, we will explore the consensus behaviours for a first-order difference system with
the processing delay effects. Setting X(n) = (R1(n)T , R2(n)T , . . . , RN (n)T )T , then the system
(3) can be written as

X(n+ 1) = X(n)− ετ(L⊗ C)X(n− 1). (4)

Let X̃(n) = (X(n)T , X(n− 1)T )T , then the system would be transmitted as follows:

X̃(n+ 1) = MX̃(n), (5)

where M is a 6N × 6N matrix which is given by

M =

(
I3N −ετL⊗ C
I3N 03N

)
.

On the other hand, reset X̂(n) = (R2(n)T −R1(n)T , R3(n)T −R1(n)T , . . . , RN (n)T −R1(n)T )T ,
Then the system (3) can further be written as

X̂(n+ 1) = X̂(n)− ετL̃⊗ CX̂(n− 1), (6)

where

L̃ =

 l22 − l12 · · · l2N − l1N
...

. . .
...

lN2 − l12 · · · lNN − l1N


Let X̄(n) = (X̂(n)T , X̂(n− 1)T )T , then the system (6) can be written as follows

X̄(n+ 1) = EX̄(n), (7)

where E is a 6(N − 1)× 6(N − 1) matrix as

E =

(
I3(N−1) −ετL̃⊗ C
I3(N−1) 03(N−1)

)
.

At this stage, we require some key lemmas.

Lemma 2.1 Let M be given in (5). Then 0 is an eigenvalue of L with algebraic multiplicity m
if and only if 1 is an eigenvalues of M with algebraic multiplicity 3m.

Proof. Compute

det(σI6N −M) = det

(
(σ − 1)I3N ετL⊗ C
−I3N σI3N

)
=

N∏
i=1

3∏
j=1

mij(σ) = 0 (8)

where
mij(σ) = σ2 − σ + ετµicj .

σij,1 =
1 +

√
1− 4ετµicj

2
, σij,2 =

1−
√

1− 4ετµicj

2

for i = 1, 2, . . . , N, j = 1, 2, 3. Therefore, 1 is an eigenvalues of M with algebraic multiplicity
3m if and only if L has a zero eigenvalue with algebraic multiplicity m.
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Lemma 2.2 The eigenvalues of the reduced Laplacian matrix L̃ consist of the rest eigenvalues
of Laplacian matrix L except a zero eigenvalue, Moreover, M has three more 1 and 0 eigenvalues
than E , and the rest eigenvalues are the same.

Proof.The first part of this lemma can be obtained from the proof of Lemma 1 in [14]. Now
we prove the second part of this lemma. By the proof of Lemma 2.1, we get that

det(σI6N −M) = det

(
(σ − 1)I3N ετL⊗ C
−I3N σI3N

)
=

N∏
i=1

3∏
j=1

σ2 − σ + ετµicj

det(σI6N−6 − E) = det

(
(σ − 1)I3(N−1) ετL̃⊗ C
−I3(N−1) σI3(N−1)

)
=

N∏
i=2

3∏
j=1

σ2 − σ + ετµicj (9)

This implies that M has three more eigenvalues 1 and 0 than E, and the algebraic multiplicity
of the other eigenvalues is the same.

It is evident from the previous two lemmas that the system (5) achieves consensus
asymptotically if and only if the system (7) is asymptotically stable.

Lemma 2.3 If 0 is a simple eigenvalue of the matrix L, then zero is an eigenvalue of the matrix
L
⊗
C with algebraic multiplicity 3, and 1 is an eigenvalue of the matrix M with algebraic

multiplicity 3. Meanwhile, the right eigenvector of M associated with eigenvalue 1 is given

by
(
1TN
⊗
%Tl 1TN

⊗
%Tl
)T
, and the left eigenvector given by

(
pT
⊗
ρl 0TN

⊗
ρl
)
, where

l = 1, 2, 3.

Proof By Lemma 1.3 and Lemma 2.1, it is clear that if L has a simple zero eigenvalue, then
L
⊗
C has a zero eigenvalue with algebraic multiplicity 3 and the matrix M has an eigenvalue

1 with algebraic multiplicity 3.

Next, we calculate the eigenvector of the eigenvalue 1. we assume w =
(
wTa , wTb

)T
is the

right eigenvector of M , then

Mw =

(
I3N −ετL

⊗
C

I3N 03N×3N

)(
wa
wb

)
=

(
wa
wb

)
.

Thus, we have {
I3nwa − ετL

⊗
Cwb = wa,

I3nwa = wb.

So wb is the right eigenvectors of L
⊗
C associated with the zero eigenvalue, and the right

eigenvectors of M associated with the eigenvalue 1 is given by(
1TN
⊗
%Tl , 1TN

⊗
%Tl
)T
.

The left eigenvectors can found similarly.
Next, we require a criterion about the distribution of roots of the following algebraic equation

with complex coefficients
σ2 + c1σ + c2 = 0, (10)

where ck = ak + jbk, ak, bk are real numbers for k = 1, 2 and j =
√
−1.
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Lemma 2.4 ([15]) All the roots of (10) have negative real parts if and only if a1 > 0 and
a21a2 + b2(a1b1 − b2) > 0.

Theorem 2.1 System (5) achieves consensus if and only if the matrix M has exactly an
eigenvalue 1 with multiplicity 3 and all the other eigenvalues are stay in the unit disk. In
addition, if the consensus is reached, we have

lim
n→∞

‖Ri(n)−R∞‖ = 0. i = 1, 2, · · · , N.

where R∞ = [pT r(0),pT s(0),pT t(0)], p = (p1, p2, · · · , pn)T satisfying pT 1N =
1 is the unique nonnegative left eigenvector of L associated with zero eigenval-
ue, r(0) = (r11(0), r12(0), · · · , r1N (0))T , s(0) = (r21(0), r22(0), · · · , r2N (0))T , t(0) =
(r31(0), r32(0), · · · , r3N (0))T .

Proof (Necessity) Noting that 1 is the eigenvalue of matrix M with algebraic multiplicity 3,
by lemma 2.3, we see that the corresponding right eigenvectors associated with the eigenvalue 1
are (12N ⊗ %1), (12N ⊗ %2) and (12N ⊗ %3), the corresponding left eigenvectors associated with
the eigenvalue 1 are (pT ⊗ ρ1,0N ⊗ ρ1), (pT ⊗ ρ2,0N ⊗ ρ2) and (pT ⊗ ρ3,0N ⊗ ρ3). They are
obviously linear independent. So the geometric multiplicity of the eigenvalue 1 of matrix M is
3 too. There exists a nonsingular matrix P ∈ R6N×6N , such that

P−1MP =


1 0 0 0T6N−3
0 1 0 0T6N−3
0 0 1 0T6N−3

06N−3 06N−3 06N−3 J̃

 ,

where J̃ is the diagonal matrix composed of Jordan blocks associated with the other eigenvalues
of matrix M . Thus

M =
(
ζ1, ζ2, . . . , ζ6N

)
1 0 0 0T6N−3
0 1 0 0T6N−3
0 0 1 0T6N−3

06N−3 06N−3 06N−3 J̃




ηT1
ηT2
...

ηT6N


where ζj and ηj(j = 1, 2, . . . , 6N) are columns and rows of P and P−1, respectively. Since
the eigenvalues of matrix M satisfy |σ| < 1 except for the eigenvalue σ1,2,3 = 1. Thus

lim
n→+∞

J̃n = 0(6N−3)×(6N−3).

Noting that

lim
n→+∞

X̃(n) = lim
n→+∞

MnX̃(0) =
(
12N ⊗ %1,12N ⊗ %2,12N ⊗ %3, . . .

)


1 0 0 0T6N−3
0 1 0 0T6N−3
0 0 1 0T6N−3

06N−3 06N−3 06N−3 limn→+∞ J̃
n




pT ⊗ ρ1 0TN ⊗ ρ1
pT ⊗ ρ2 0TN ⊗ ρ2
pT ⊗ ρ3 0TN ⊗ ρ3

...

 X̃(0)

=

3∑
i=1

((1TN 1TN )T ⊗ %i)((pT 0TN )⊗ ρi)X̃(0)

=

(
1Np

T 1N0
T
N

1Np
T 1N0

T
N

)
⊗

3∑
i=1

%iρiX̃(0)

=

(
1Np

T 1N0
T
N

1Np
T 1N0

T
N

)
⊗ I3X̃(0).
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Thus
lim

n→+∞
X(n) = 1Np

T ⊗ I3X(0)

we have limn→∞ ‖Ri(n) − R∞‖ = 0 for all i, where R∞ = [pT r(0),pT s(0),pT t(0)], r(0) =
(r11(0), r12(0), · · · , r1N (0))T , s(0) = (r21(0), r22(0), · · · , r2N (0))T , t(0) = (r31(0), r32(0), · · · , r3N (0))T .

(Sufficiency) Suppose to the contrary, if the matrix M has exactly an eigenvalue 1 with
multiplicity 3 and all the other eigenvalues are stay in the unit disk is not satisfied, then by
Lemma 2.1, the multiplicity of 1 eigenvalue in M is at least 3 since L has a zero eigenvalue at
least. Hence, there are three cases needed to be discussed:

Case I: The multiplicity of 1 eigenvalue in M is 3, and there exists at least an eigenvalue
which is not in the unit disk;

Case II: The multiplicity of 1 eigenvalue in M is more than 3, and the rest eigenvalues are in
the unit disk;

Case III: The multiplicity of 1 eigenvalue in M is more than 3, and there exists at least an
eigenvalue which is not in the unit disk.

For Case I, by Lemma 2.2, if M has an eigenvalue which is not in the unit circle, then E also
has an eigenvalue which is not in the unit circle. Therefore, the stability of system (7) cannot
be achieved, which means that the consensus of system (5) cannot be achieved. Similarly, we
can prove Case II and Case III. This completes the proof.

Theorem 2.2 System (5) achieves consensus asymptotically if and only if the digraph G has a
directed spanning tree, and

θ < θc = min
i=2,3,···,N

{arccos(ετ |µi|)− argµi, arccos
3ετ |µi| − ε3τ3|µi|3

2
− argµi}. (11)

Proof (Sufficiency) It follows from Theorem 2.1 that if the system (5) achieves asymptotical
consensus, then 1 is an eigenvalue of matrix M with algebraic multiplicity three and the all
other eigenvalues are inside the unit disk. By Lemma 2.1 and Lemma 1.1, matrix L has a simple
zero eigenvalue, which implies that G has a directed spanning tree.

Meanwhile, considering the characteristic equation (9), by applying the bilinear
transformation s = σ+1

σ−1 to mij , we get a series of new polynomials

fi(s) = (s− 1)2((
s+ 1

s− 1
)2 − s+ 1

s− 1
+ ετµicj) = s2ετµicj + 2s(1− ετµicj) + 2 + ετµicj .

Define γi(s) (i = 2, 3, · · · , N) as

γi(s) =
fi(s)

ετµicj
= s2 + (

2

ι
− 2)s+ (

2

ι
+ 1), (12)

where ι = ετµicj .
Noting that the properties of bilinear function, we see that all roots of (9) are inside the

unit disk if and only if all roots of γi(s) = 0 have negative real parts for i = 2, 3, · · · , N . Let
a1 + b1j = 2

ι − 2, a2 + b2j = 2
ι + 1, then we see that b1 = b2, a1 = a2 − 3. It follows from Lemma

2.4 that all roots of γi(s) = 0 have negative real parts if and only if

a1 > 0, a21(a1 + 3) + a1b
2
1 − b21 > 0.

Noting the fact that

a1 = <(
2

ετµicj
− 2) = <(

2µicj
ετ |µi|2

− 2) =
2 cos(θ + arg µi)

ετ |µi|
− 2 > 0
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if and only if
cos(θ + argµi) > ετ |µi|,

we see that θ < arccos(ετ |µi|)− argµi, for all i = 2, 3, · · · , N .
Also, by direct calculation, we get

a21 + b21 = (
2

ι
− 2)(

2

ι
− 2) = 4(

1

|ι|2
+ 1− 2<(ι)

|ι|2
)

= 4(
1

ε2τ2|µi|2
+ 1− 2 cos(θ + arg µi)

ετ |µi|
)

and

a21 = 4(
cos(θ + argµi)

ετ |µi|
− 1)2.

It follows from
a21(a1 + 3) + a1b

2
1 − b21 > 0

that
(a1 − 1)(a21 + b21) + 4a21 > 0.

This implies that

θ < arccos
3ετ |µi| − ε3τ3|µi|3

2
− argµi, i = 2, 3, · · · , N.

Thus

θ < θc = min
i=2,3,···,N

{arccos(ετ |µi|)− argµi, arccos
3ετ |µi| − ε3τ3|µi|3

2
− argµi}.

Hence the sufficiency.
(Necessity)if θ satisfy (11), we have that all the roots of (9) stay inside the unit disk for each

i = 2, 3, · · · , N. It implies that the eigenvalues of M are inside the unit disk except eigenvalue
1. Since the digraph G contains a directed spanning tree, we have that the Laplacian matrix L
has a simple zero-eigenvalue. By Lemma 2.2, 1 is not the eigenvalue of matrix E, but 1 is the
eigenvalue of matrix M with algebraic multiplicity three. By Theorem 2.1, system (5) achieves
consensus asymptotically. This completes the proof of Theorem 2.2.

Remark 2.1 By theorem 2.1 We can see that the consensus value is only determined by
X(0) and the topological structure of the system, it has nothing to do with the value of
X(−1), the delay τ and the iterative step ε, this is the same as our experimental results, the
results of the experiment of the system (5) with Laplacian matrix (13) shown as table 1(when
τ = 3, ε = 0.01, θc = 54.1102):

Remark 2.2 By Theorem 2.2 we can see that the delay τ , the iterative step ε and the directed
graph of the system play a decisive role in the critical rotation angle θc. this fact matches with
our experimental results for system (5) with Laplacian matrix (13) shown as table 2:
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Table 1. Examples for consensus value with different initial value.

X(0) X(-1) consensus value

(30 3 5 2 8 8 2 2 2 4 3 9) (4 2 9 10 4 1 3 4 6 3 6 7) (8.5435 4.5326 6.3370)
(30 3 5 2 8 8 2 2 2 4 3 9) (0 0 0 0 0 0 0 0 0 0 0 0 ) (8.5435 4.5326 6.3370)
(30 3 5 2 8 8 2 2 2 4 3 9) (1 2 3 4 5 6 7 8 9 10 11 12 ) (8.5435 4.5326 6.3370)
(3 3 5 2 8 8 2 2 2 4 3 9) (1 2 3 4 5 6 7 8 9 10 11 12 ) (2.6739 4.5326 6.3370)
(30 4 5 2 8 8 2 2 2 4 3 9) (1 2 3 4 5 6 7 8 9 10 11 12 ) (8.5435 4.7500 6.3370)

Table 2. Examples for θc with different initial value,τ , ε.

X(0) τ ε θc

(3 3 5 2 8 8 2 2 2 4 3 9) 3 0.01 54.1102
(3 3 5 2 8 8 2 2 2 4 3 9) 3 0.03 21.7472
(3 3 5 2 8 8 2 2 2 4 3 9) 1 0.01 64.7168
(3 3 5 2 8 8 2 2 2 4 3 9) 1 0.03 54.1102
(2 3 5 2 8 2 2 2 2 4 3 9) 1 0.03 54.1102
(2 3 5 2 8 2 2 2 2 4 3 9) 1 0.03 54.1102

3. Numerical Simulation
In this section, the main conclusions of the article are verified by numerical simulation. In the
numerical simulation, we assume N = 4 and consider the Laplacian matrix

L =


2 −1 0 −1
0 3 −1 −2
−1 −4 5 0
−1 0 −3 4

 (13)

and all its eigenvalues are µ1 = 0, µ2 = 5.7869 + 2.1051j, µ3 = 5.7869− 2.1051j and µ4 = 2.4262.
After simple calculations, we can get p = (0.2174 0.3478 0.2065 0.2283)T is a non-negative
left eigenvector of L associated with eigenvalue 0 with pi ≥ 0 and

∑n
i=1 pi = 1, Take ε = 0.01

and initial values selected as

r(0) = (2, 2, 2, 4)T , s(0) = (3, 8, 2, 3)T , t(0) = (5, 2, 2, 9)T .

by Theorem 2.1 and Theorem 2.2 the consensus value is (2.4565 4.5326 4.2500), θc = 0.9444 rad
(54.1102 degree). Fig. 1 confirms the correctness of our theoretical results.
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