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Abstract. Let 𝑅 and 𝑆 be a pair of equivalent rings. We will prove that if 𝑅 has property that a 

pair of modules over 𝑅 are isomorphic if and only if their endomorphism rings are isomorphic 

than 𝑆 has same property, i.e. a pair of modules over S are isomorphic if and only if their 

endomorphism rings are isomorphic. 

1. Introduction 

Let 𝑀 and 𝑁 are modules over a ring 𝑅 and set of all 𝑅-homomorphisms from 𝑀 to 𝑁 is written 

Hom𝑅(𝑀,𝑁). Then Hom𝑅(𝑀,𝑁) is Abelian group over addition of mapping. Moreover, End𝑅(𝑀) =

Hom𝑅(𝑀,𝑀) is a ring over addition and composition of mapping, and called an endomorphism ring 

of 𝑀. In general, if two modules are isomorphic then their endomorphism rings are isomorphic, but the 

converse is not true. The Baer-Kaplansky theorem states that two torsion groups are isomorphic if and 

only if their endomorphism rings are isomorphic (see [1–3]). May and Taubassy [4] investigated the 

relationship between torsion subgroups of two abelian groups with their endomorphism rings are 

isomorphic. Using the method used by Kaplansky [1], Wolfson [5] works on a torsion-free module 

over a discrete valuation ring. The theorem obtained is "If 𝑀 and 𝑁 modules are torsion-free of the 

complete discrete valuation ring 𝑅, then each ring isomorphism between End𝑅(𝑀) and End𝑅(𝑁) is 

induced by the module isomorphism between 𝑀 and 𝑁". Wolfson divided the theorem into two cases, 

namely for 𝑀 not divisible and 𝑀 divisible. For the first case the fact used is a torsion-free module and 

not divisible over a complete discrete valuation ring 𝑅 has a direct summand that is isomorphic with 

𝑅. In the second case the fact used is a torsion-free module and divisible over the complete discrete 

valuation ring 𝑅 is the vector space over the division field of 𝑅. On a modules over complete valuation 

domains May [6] got a theorem like the Baer-Kaplansky theorem and proved for reduced modules 

which are neither torsion nor torsion-free. 

Ivanov [7] got same result with the Baer-Kaplansky theorem, i.e. the triangular matrix ring has a 

class of modules which have same property with torsion group in Baer-Kaplansky Theorem. To get 

this result, Ivanov explores further the properties of the torsion group. The indecomposable 𝑝-group is 

isomorphic to ℤ(𝑝𝑛) or ℤ(𝑝∞). The ring End𝑅(ℤ(𝑝
𝑛)) is isomorphic to the ring ℤ/(𝑝𝑛) and the ring 

End𝑅(ℤ(𝑝
∞)) is isomorphic to the 𝑝-adic integer ring (see [2] and [1]). Therefore, every ring 

isomorphism between two endomorphism rings of the torsion group always "preserve indecomposable 

direct summand". Ivanov called this isomorphism as an IP-isomorphism. For a class of modules which 
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have a decomposition 𝑀 = ⨁𝑖∈𝐼𝑀𝑖 with property that every indecomposable direct summand of 𝑀 is 

contained in the sum of finite number of the 𝑀𝑖 (we say that 𝑀 has the finite embedding property), an 

IP-isomorphism between endomorphism rings will give isomorphism between modules. Using fact 

that the ring End𝑅(ℤ(𝑝
∞)) is isomorphic to the 𝑝-adic integer ring, Breaz [8] also got a class of 

modules over principal ideal domain satisfied the Baer-Kaplansky theorem. 

In fact, two vector spaces are isomorphic if and only if their endomorphism rings are isomorphic. 

Also in case module over a simple Artin ring, i.e. two modules over a simple Artin ring isomorphic if 

and only if their endomorphism rings are isomorphic. In fact that matrix ring 𝑛 × 𝑛 over a division 

ring is a simple Artin ring and every a simple Artin ring isomorphic to a matrix ring over a division 

ring (see [9] page 152-153). Moreover, a ring 𝑅 and the 𝑛 × 𝑛 matrix ring over 𝑅 are equivalent ring 

(see [9] page 262-265). Then division ring and a simple Artin are equivalent rings. 

Let 𝑅 and 𝑆 be a pair of equivalent rings. In this paper we will prove that if 𝑅 has property that a 

pair of modules over 𝑅 isomorphic if and only if their endomorphism rings are isomorphic then 𝑆 has 

same property. 

In this paper a ring will be a ring with unity and all modules will be nonzero unital right module 

except if in special case. Definition of ring, module, category, and others which are used in this paper 

refer to [9]. 

 

2. IP-isomorphism 

In this section we will discuss about an IP-isomorphism and it's relation with module isomorphism. 

We will discuss about primitive idempotent and property of indecomposability of direct summand. 

An element 𝑒 in a ring 𝑅 is called idempotent if 𝑒2 = 𝑒. Two idempotents 𝑒1 and 𝑒2 in 𝑅 are called 

orthogonal if 𝑒1𝑒2 = 0 = 𝑒2𝑒1. An idempotent 𝑒 ≠ 0 in 𝑅 is called primitive idempotent if 𝑒 can not 

be a sum of two nonzero orthogonal idempotent. 

Let 𝑀 be a module over a ring 𝑅 and 𝑒 an idempotent in End𝑅(𝑀). Then 1 − 𝑒 is also idempotent 

in End𝑅(𝑀). Moreover, 𝑒 and 1 − 𝑒 orthogonal and 𝑀 has decomposition 𝑀 = 𝑒𝑀⊕ (1 − 𝑒)𝑀. The 

following lemma will give characterization of primitiveness of 𝑒. 

 

Lemma 1. Let 𝑀 be a module over a ring 𝑅 and 𝑒 ≠ 0 be an idempotent in End𝑅(𝑀). Then the direct 

summand 𝑒𝑀 is indecomposable if and only if 𝑒 is a primitive idempotent in End𝑅(𝑀). 
 

Proof: Let 𝑒𝑀 is indecomposable. We will prove that 𝑒 is a primitive idempotent. Let 𝑒 = 𝑒₁ + 𝑒₂, 

where 𝑒₁ and 𝑒₂ are orthogonal idempotents in End𝑅(𝑀). Since 𝑒 = 𝑒₁ + 𝑒₂ then 𝑒𝑀 = 𝑒₁𝑀 + 𝑒₂𝑀. 

Let 𝑥 ∈ 𝑒₁𝑀 ∩ 𝑒₂𝑀. Then 𝑥 = 𝑒₁𝑚₁ = 𝑒₂𝑚₂, for some 𝑚₁,𝑚₂ ∈ 𝑀. So 

𝑥 = 𝑒₁𝑚₁ = 𝑒₁²𝑚₁ = 𝑒₁(𝑒₁𝑚₁) = 𝑒₁(𝑒₂𝑚₂) = (𝑒₁𝑒₂)𝑚₂ = 0𝑚₂ = 0.  

So 𝑒₁𝑀 ∩ 𝑒₂𝑀 = 0. Therefore 𝑒𝑀 = 𝑒₁𝑀⊕ 𝑒₂𝑀. Since 𝑒𝑀 is indecomposable then 𝑒₁𝑀 = 0 or 

𝑒₂𝑀 = 0. So 𝑒₁ = 0 or 𝑒₂ = 0. Then e is a primitive idempotent in End𝑅(𝑀). 

Conversely, let 𝑒 is a primitive idempotent in End𝑅(𝑀). We will prove that 𝑒𝑀 is indecomposable. 

Let 𝑒𝑀 = 𝐾⊕ 𝐿. Then 

𝑀 = 𝑒𝑀⊕ (1 − 𝑒)𝑀 = 𝐾⊕ 𝐿⊕ (1 − 𝑒)𝑀.  

Let 𝑒𝐾 be a projection on 𝐾 along 𝐿 ⊕ (1 − 𝑒)𝑀 and 𝑒𝐿 be a projection on 𝐿 along 𝐾⊕ (1 − 𝑒)𝑀. 

Since 𝑒𝐾𝑀 = 𝐾 ⊆ Ker(𝑒𝐿) and 𝑒𝐿𝑀 = 𝐿 ⊆ Ker(𝑒𝐾) then (𝑒𝐾𝑒𝐿)𝑀 = 0 = (𝑒𝐿𝑒𝐾)𝑀. Then 𝑒𝐾 and 𝑒𝐿 

are orthogonal idempotents in End𝑅(𝑀). Furthermore, for each 𝑥 ∈ 𝑀 = 𝐾⊕ 𝐿⊕ (1 − 𝑒)𝑀 can be 

written 𝑥 = 𝑥𝐾 + 𝑥𝐿 + 𝑥′ for some 𝑥𝐾 ∈ 𝐾, 𝑥𝐿 ∈ 𝐿, 𝑥′ ∈ (1 − 𝑒)𝑀. So 

𝑒𝑥 = 𝑥𝐾 + 𝑥𝐿 = 𝑒𝐾𝑥 + 𝑒𝐿𝑥 = (𝑒𝐾 + 𝑒𝐿)𝑥.  
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Therefore 𝑒 = 𝑒𝐾 + 𝑒𝐿, where 𝑒𝐾 and 𝑒𝐿 are orthogonal idempotents in End𝑅(𝑀). Since e is a 

primitive idempotent in End𝑅(𝑀) then 𝑒𝐾 = 0 or 𝑒𝐿 = 0. Therefore 𝐾 = 𝑒𝐾𝑀 = 0 or 𝐿 = 𝑒𝐿𝑀 = 0. 

So 𝑒𝑀 is indecomposable. □ 

 

Let given 𝑀 and 𝑁 be modules over a ring 𝑅, and 𝜑: 𝑀 → 𝑁 any 𝑅-isomorphism. The mapping α 

which defined 

𝛼: End𝑅(𝑀)  ⟶ End𝑅(𝑁), 𝛼(𝜓) = 𝜑𝜓𝜑⁻¹ 

is a ring isomorphism. Furthermore, for any idempotent 𝑒 in End𝑅(𝑀) satisfies 

𝛼(𝑒)𝑁 =  𝜑𝑒𝜑⁻¹𝑁 =  (𝜑𝑒)(𝜑⁻¹𝑁)  =  (𝜑𝑒)𝑀 =  𝜑(𝑒𝑀).  

Therefore 

𝜑|𝑒𝑀: 𝑒𝑀 ⟶ 𝛼(𝑒)𝑁  

is a 𝑅-isomorphism. So 𝑒𝑀 ≅ 𝛼(𝑒)𝑁, for all e idempotent in End𝑅(𝑀). 

In general, if 𝛽: End𝑅(𝑀)  → End𝑅(𝑁) is any ring isomorphism and 𝑒 is any primitive idempotent 

in End𝑅(𝑀) then 𝛽(𝑒) is also a primitive idempotent in End𝑅(𝑁) but it must not 𝑒𝑀 ≅ 𝛽(𝑒)𝑁. Ring 

isomorphism 

𝜙: End𝑅(𝑀)  → End𝑅(𝑁) 

is called IP-isomorphism if 𝜙(𝑒)𝑁 ≅ 𝑒𝑀, for all primitive idempotents 𝑒 in End𝑅(𝑀). From 

discussion above, if 𝑀 ≅ 𝑁 then there is an IP-isomorphism between End𝑅(𝑀) and End𝑅(𝑁). The 

following theorem gives property that an IP-isomorphism between endomorphism rings will give 

module isomorphism. 

 

Proposition 1. ([7], Proposition 1) Let 𝑀 and 𝑁 be modules over a ring 𝑅 where 𝑀 has the finite 

imbedding property with respect to a decomposition into indecomposable direct summands and 𝑁 be 

generated by indecomposable direct summands. Then 𝑀 and 𝑁 isomorphic if and only if there is an 

IP-isomorphism between End𝑅(𝑀) and End𝑅(𝑁). 

 

Proof: Let 𝑀 = ⨁𝑖∈𝐼𝑀𝑖 where 𝑀𝑖 indecomposable and this decomposition has the finite imbedding 

property and 𝑁 = ∑𝑗∈𝐽𝑁𝑗 where 𝑁𝑗 indecomposable direct summand of 𝑁. Let there is an IP-

isomorphism 

𝜙: End𝑅(𝑀)  → End𝑅(𝑁) 

We will prove that there is a module isomorphism between 𝑀 and 𝑁. Let 

𝑒𝑖: 𝑀 → 𝑀  

is a projection on 𝑀𝑖. Then 𝑒𝑖 is a primitive idempotent in End𝑅(𝑀), for all 𝑖 ∈ 𝐼. Let 𝑓𝑖 = 𝜙(𝑒𝑖) ∈

End𝑅(𝑁). Since 𝜙 is an IP-isomorphism then 

𝑒𝑖𝑀 ≅ 𝜙(𝑒𝑖)𝑁 = 𝑓𝑖𝑁, ∀𝑖 ∈ 𝐼.  

Let this isomorphic is given by 

𝜓𝑖: 𝑒𝑖𝑀 → 𝑓𝑖𝑁, ∀𝑖 ∈ 𝐼.  

For each 𝑥 ∈ 𝑀 can be written 𝑥 = ∑𝑖∈𝐼𝑥𝑖 for some 𝑥𝑖 ∈ 𝑀𝑖 uniquely and almost all 𝑥𝑖 = 0. Therefore 

𝑆(𝑥) = {𝑖 ∈ 𝐼 | 𝑥𝑖 ≠ 0 } is a finite set. We define 
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𝜓: 𝑀 → 𝑁, 𝜓(𝑥) = ∑ 𝜓𝑖(𝑥𝑖)

𝑖∈𝑆(𝑥)

.  

Then 𝜓 is an one-one 𝑅-homomorphism with 

Im(𝜓) =∑Im(𝜓𝑖)

𝑖∈I

=∑𝑓𝑖𝑁

𝑖∈I

.  

We will prove that 𝜓 is onto. Let 𝑁𝑗 is any indecomposable direct summand of 𝑁 which generate 𝑁. 

Let 𝑓𝑗: 𝑁 → 𝑁𝑗 be a projection and 𝑒𝑗 = 𝜙⁻¹(𝑓𝑗). Furthermore, since 𝑓𝑗 is a primitive idempotent in 

End𝑅(𝑁) then 𝑒𝑗 is also a primitive idempotent in End𝑅(𝑀). Since 𝑀 has the finite imbedding 

property then 𝑒𝑗𝑀 is contained in a sum of finite number of the 𝑀𝑖. Let 

𝑒𝑗𝑀 ⊆ 𝑀𝑖1⊕…⊕𝑀𝑖𝑛 .  

We will prove that (1 − 𝑒𝑖1 −⋯− 𝑒𝑖𝑛)𝑒𝑗 = 0. For any 𝑚 ∈ 𝑀 we have 

𝑒𝑗𝑚 ∈ 𝑒𝑗𝑀 ⊆ 𝑀𝑖1⊕…⊕𝑀𝑖𝑛 .  

We write 

𝑒𝑗𝑚 = 𝑚1 +⋯+𝑚𝑛, for some 𝑚𝑘 ∈ 𝑀𝑖𝑘 , 𝑘 = 1,… , 𝑛.  

Therefore 

((1 − 𝑒𝑖1 −⋯− 𝑒𝑖𝑛)𝑒𝑗)𝑚 = (1 − 𝑒𝑖1 −⋯− 𝑒𝑖𝑛)(𝑒𝑗𝑚) 

= (1 − 𝑒𝑖1 −⋯− 𝑒𝑖𝑛)(𝑚1 +⋯+𝑚𝑛) 

= (𝑚1 +⋯+𝑚𝑛) − 𝑚1 −⋯−𝑚𝑛 

= 0. 

So (1 − 𝑒𝑖1 −⋯− 𝑒𝑖𝑛)𝑒𝑗 = 0. Then 

(1 − 𝑓𝑖1 −⋯− 𝑓𝑖𝑛)𝑓𝑗 = 𝜙 ((1 − 𝑒𝑖1 −⋯− 𝑒𝑖𝑛)𝑒𝑗) = 𝜙(0) = 0. 

Therefore 𝑓𝑗 = (𝑓𝑖1 +⋯+ 𝑓𝑖𝑛)𝑓𝑗. So 

𝑁𝑗 = 𝑓𝑗𝑁 = ((𝑓𝑖1 +⋯+ 𝑓𝑖𝑛)𝑓𝑗)𝑁 = (𝑓𝑖1 +⋯+ 𝑓𝑖𝑛)(𝑓𝑗𝑁) = (𝑓𝑖1 +⋯+ 𝑓𝑖𝑛)𝑁𝑗 

⊆ (𝑓𝑖1 +⋯+ 𝑓𝑖𝑛)𝑁 = 𝑓𝑖1𝑁 +⋯+ 𝑓𝑖𝑛𝑁 ⊆∑𝑓𝑖𝑁

𝑖∈𝐼

= Im(𝜓). 

Then 𝑁𝑗 ⊆ Im(𝜓) for all 𝑗 ∈ 𝐽. Therefore 𝑁 = Im(𝜓). So 𝜓 is onto. Thus 𝜓: 𝑀 → 𝑁 is a 𝑅-

isomorphism. □ 

 

3. Case on Vector Space 

We will discuss a case on vector space. Firstly we will prove that every isomorphism between 

endomorphism rings of two vector spaces is an IP-isomorphism. 

 

Proposition 2. Let 𝑉 and 𝑊 be vector spaces over a field 𝐹. Then every ring isomorphism between 

End𝐹(𝑉) and End𝐹(𝑊) is an IP-isomorphism. 
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Proof: Let 𝜑: End𝐹(𝑉) → End𝐹(𝑊) be a ring isomorphism and 𝑒 be a primitive idempotent in 

End𝐹(𝑉). We will proof that 𝑒𝑉 ≅ 𝜑(𝑒)𝑊. Since 𝑒 is a primitive idempotent in End𝐹(𝑉) then 𝜑(𝑒) is 

a primitive idempotent in End𝐹(𝑊). According to Lemma 1, 𝑒𝑉 and 𝜑(𝑒)𝑊 are indecomposable. 

Thus dimension of 𝑒𝑉 and 𝜑(𝑒)𝑊 are one. Since two vector spaces are isomorphic if and only if have 

same dimension then 𝑒𝑉 ≅ 𝜑(𝑒)𝑊. Thus 𝜑 is an IP-isomorphism. □ 

 

Corollary 1.  Let 𝑉 and 𝑊 be vector spaces over a field 𝐹. Then 𝑉 ≅ 𝑊 if and only if End𝐹(𝑉) ≅

End𝐹(𝑊). 
 

Proof: Since every ring isomorphism between End𝐹(𝑉) and End𝐹(𝑊) is IP-isomorphism and 

every decomposition of a vector space satisfies the finite embedding property then according to 

Proposition 1 we have 𝑉 ≅ 𝑊. □ 

 

 

4. Case on Module Over Simple Artin ring 

Matrix ring 𝑛 × 𝑛 over division ring is a simple Artin ring. Furthermore, every simple Artin ring is 

isomorphic to matrix ring over a division ring ([9], 152-153). Therefore, every modules over a simple 

Artin ring is semi simple modules and all simple modules over a simple Artin ring are isomorphic. 

We will prove that every isomorphism between endomorphism rings of module over a simple Artin 

ring is an IP-isomorphism. We use similar method with method which used in vector space case. It is 

possible because a module over a simple Artin ring has similar property with a vector space, i.e. every 

indecomposable direct summand of a module over a simple Artin ring is a simple module and all these 

simple modules are isomorphic. 

 

Proposition 3.  Let 𝑀 and 𝑁 be modules over a simple Artin ring 𝑅. Then every ring isomorphism 

between End𝑅(𝑀) and End𝑅(𝑁) is an IP-isomorphism. 

 

Proof: Let 𝜑: End𝑅(𝑀) → End𝑅(𝑁) be a ring isomorphism and 𝑒 be a primitive idempotent in 

End𝑅(𝑀). We will prove that 𝑒𝑀 ≅ 𝜑(𝑒)𝑁. Since 𝑒 is a primitive idempotent in End𝑅(𝑀) then 𝜑(𝑒) 

is also a primitive idempotent in End𝑅(𝑁). According to Lemma 1, 𝑒𝑀 and 𝜑(𝑒)𝑁 are 

indecomposable. Therefore 𝑒𝑀 and 𝜑(𝑒)𝑁 are simple module. So 𝑒𝑀 ≅ 𝜑(𝑒)𝑁. Then φ is an IP-

isomorphism. □ 

 

Corollary 2.   Let 𝑀 and 𝑁 be modules over a simple Artin ring 𝑅. Then 𝑀 ≅ 𝑁 if and only if 

End𝑅(𝑀)  ≅ End𝑅(𝑁). 

 

Proof: Since every ring isomorphism between End𝑅(𝑀) and End𝑅(𝑁) is an IP-isomorphism and 

every decomposition of semi simple module satisfies the finite imbedding property then according to 

Proposition 1, we have 𝑀 ≅ 𝑁. □ 

 

5. Equivalent Functor 

Let MOD-R and MOD-S be categories of modules over a ring 𝑅 and 𝑆 respectively. A functor 

(covariant and additive) 

𝐹:MOD-𝑅 ⟶ MOD-𝑆 

can viewed as "homomorphism of categories", i.e. 
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𝐹 : 𝑀 ⟼ 𝐹(𝑀)

𝑓:𝑀 → 𝑁 ⟼ 𝐹(𝑓): 𝐹(𝑀) → 𝐹(𝑁)
 

with properties 

1. 𝐹(𝑖𝑑𝑀) = 𝑖𝑑𝐹(𝑀) for every M in MOD-R; 

2. 𝐹(𝑔𝑓) = 𝐹(𝑔)𝐹(𝑓) for all K, M, N di MOD-R and all morphisms 𝑓: 𝐾 → 𝑀 dan 𝑔:𝑀 → 𝑁; 

3. 𝐹(𝑔 + 𝑓) = 𝐹(𝑔) + 𝐹(𝑓) for all M, N di MOD-R and all morphisms 𝑓:𝑀 → 𝑁 dan 𝑔:𝑀 → 𝑁. 

 

Two functors 𝐹:MOD-𝑅 ⟶ MOD-𝑆 and 𝐺:MOD-𝑅 ⟶ MOD-𝑆 are said isomorphic, written 𝐹 ≅ 𝐺, 

if there exist an indexed class of isomorphism 

(𝜂𝑀: 𝐹(𝑀) → 𝐺(𝑀))𝑀∈MOD-𝑅 

 such that for each pair 𝑀,𝑁 in MOD-R and each morphism 𝑓:𝑀 → 𝑁 the diagram 

 

 

𝐹(𝑀) 
 𝐹(𝑓) 
→    𝐹(𝑁) 

↓ 𝜂𝑀  ↓ 𝜂𝑁 

𝐺(𝑀) 
 𝐺(𝑓) 
→    𝐺(𝑁) 

commutes, i.e. 

𝜂𝑁 ∘ 𝐹(𝑓) = 𝐺(𝑓) ∘ 𝜂𝑀 . 

A functor 𝐹:MOD-𝑅 ⟶ MOD-𝑆 is called an equivalent functor if there is a functor 𝐺:MOD-𝑅 ⟶

MOD-𝑆 such that 𝐺𝐹 ≅ 𝑖𝑑MOD−𝑅 and 𝐹𝐺 ≅ 𝑖𝑑MOD−𝑆. In this case, ring 𝑅 and 𝑆 are said equivalent, 

written 𝑅 ≈ 𝑆, and 𝐺 is called an inverse equivalence of 𝐹. 

 

Proposition 4.   Let MOD-R and MOD-S be categories of modules over a ring R and S respectively. If 

𝐹:MOD-𝑅 ⟶ MOD-𝑆 

be an equivalent functor and 𝑀,𝑁 in MOD-R then 

𝐹𝑀,𝑁 : Hom𝑅(𝑀,𝑁) ⟼ Hom𝑆(𝐹(𝑀), 𝐹(𝑁))

𝑓 ⟼ 𝐹(𝑓)
 

is a group isomorphism with property that 𝐹(𝑓) is an epimorphism (resp. monomorphism) if and only 

if 𝑓 is an epimorphism (resp. monomorphism). Moreover, if 𝑀 ≠ 0 then 

𝐹𝑀 : End𝑅(𝑀) ⟼ End𝑆(𝐹(𝑀))

𝑓 ⟼ 𝐹(𝑓)
 

is a ring isomorphism. 

 

Proof: Since 𝐹 is additive, we have 𝐹𝑀,𝑁 is an abelian group homomorphism. Let 𝐺 is an inverse 

equivalence of 𝐹. Then for each 𝑓 in Hom𝑅(𝑀,𝑁) the diagram 
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𝑀 
    𝑓     
→    𝑁 

↓ 𝜂𝑀  ↓ 𝜂𝑁 

𝐺𝐹(𝑀) 
 𝐺𝐹(𝑓) 
→     𝐺𝐹(𝑁) 

 

commutes. Let 𝑓 in Hom𝑅(𝑀,𝑁) and 𝐹𝑀,𝑁(𝑓) = 0. Then 

𝑓 = 𝜂𝑁
−1𝐺𝐹(𝑓)𝜂𝑀 = 𝜂𝑁

−1𝐺(0)𝜂𝑀 = 0. 

Thus we have 𝐹𝑀,𝑁 is monic. We will prove that 𝐹𝑀,𝑁 is epic. Let 𝑔 in Hom𝑆(𝐹(𝑀), 𝐹(𝑁)). Then 

𝐺(𝑔) in Hom𝑅(𝐺𝐹(𝑀), 𝐺𝐹(𝑁)). We define 

ℎ = 𝜂𝑁𝐺(𝑔)𝜂𝑀
−1. 

Then 𝐺𝐹(ℎ) = 𝐺(𝑔). So 𝐹(ℎ) = 𝑔. Thus 𝐹𝑀,𝑁 is epic. We have 𝐹𝑀,𝑁 is an abelian group 

isomorphism. Since 𝐹 preserve composition and identity, we have 𝐹𝑀 is a ring isomorphism. From 

diagram above we have 𝑓 is an epimorphism (resp. monomorphism) if and only if 𝐺𝐹(𝑓) is an 

epimorphism (resp. monomorphism). Assume 𝑓 is a monomorphism. We will prove that 𝐹(𝑓) is a 

monomorphism. Let 𝑔 be a morphism in MOD-S such that 𝑔𝐹(𝑓) = 0. Then 

𝐺(𝑔)𝐺𝐹(𝑓) = 𝐺(𝑔𝐹(𝑓)) = 𝐺(0) = 0. 

Since 𝐺𝐹(𝑓) monic, we have 𝐺(𝑔) = 0. Thus 

𝐹𝐺(𝑔) = 𝐹(0) = 0. 

Since 𝐹𝐺 ≅ 𝑖𝑑MOD−𝑆, we have 𝑔 = 0. Therefore 𝐹(𝑓) is a monomorphism. The remainder of proof is 

entirely similar. □ 

 

Let 𝐹 ∶ MOD-𝑅 ⟶  MOD-𝑆 be an equivalent functor and 𝑀,𝑁 in MOD-R. Use proposition above, 

𝑓 in Hom𝑅(𝑀,𝑁) is a module isomorphism if and only if 𝐹(𝑓) in Hom𝑅(𝐹(𝑀), 𝐹(𝑁)) is a module 

isomorphism. Furthermore, if Φ ∶ End𝑅(𝑀) ⟶ End𝑅(𝑁) is a ring isomorphism than 𝐹𝑁Φ𝐹M
−1 is a 

ring isomorphism from End𝑆(𝐹(𝑀)) to End𝑆(𝐹(𝑁)). This result is written in two following 

corollaries. 

 

Corollary 3.  Let 𝐹 ∶ MOD-𝑅 ⟶  MOD-𝑆 be an equivalent functor and 𝑀,𝑁 in MOD-R. Then 

𝐹(𝑀) ≅ 𝐹(𝑁) if and only if 𝑀 ≅ 𝑁. 

 

Corollary 4.  Let 𝐹 ∶ MOD-𝑅 ⟶  MOD-𝑆 be an equivalent functor and 𝑀,𝑁 in MOD-R. Then 

End𝑅(𝑀) ≅ End𝑅(𝑁) if and only if End𝑆(𝐹(𝑀)) ≅ End𝑆(𝐹(𝑁)). 

 

Let 𝐹 ∶ MOD-𝑅 ⟶  MOD-𝑆 be an equivalent functor and 𝑀,𝑁 in MOD-R. Use Corollary 3 and 

Corollary 4 we have following diagram. 
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𝑀 ≅ 𝑁 ⟹ End𝑅(𝑀) ≅ End𝑅(𝑁) 

⇕  ⇕ 

𝐹(𝑀) ≅ 𝐹(𝑁) ⟹ End𝑆(𝐹(𝑀)) ≅ End𝑆(𝐹(𝑁)) 

If we assume that 𝑀 ≅ 𝑁 if and only if End𝑅(𝑀) ≅ End𝑅(𝑁), then we have following diagram.  

𝑀 ≅ 𝑁 ⟺ End𝑅(𝑀) ≅ End𝑅(𝑁) 

⇕  ⇕ 

𝐹(𝑀) ≅ 𝐹(𝑁) ⟺ End𝑆(𝐹(𝑀)) ≅ End𝑆(𝐹(𝑁)) 

This result is written in following proposition. 

 

Proposition 5. Let 𝑅 and 𝑆 be a pair of equivalent rings. If 𝑅 has property that a pair of modules over 

𝑅 are isomorphic if and only if their endomorphism rings are isomorphic than 𝑆 has same property, i.e. 

a pair of modules over 𝑆 are isomorphic if and only if their endomorphism rings are isomorphic. 
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