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Abstract. Through the combination of neutron reflectometry and modulated intensity by
zero effort instrument (MIEZE) technique, it is possible to detect the inelastic and quasi-elastic
scattering on the surface and at the interface of thin films. In particular, the combination of the
time-of-flight (TOF)-MIEZE technique and polarized neutron reflectometry enables us to study
the nanomagnetic spin dynamics in a thin film. We show experimental results of TOF-MIEZE
signals of neutrons reflected by the Fe thin layer and Fe/Si multilayer as the feasibility of new
technique for investigation of nanomagnetic dynamics.

1. Introduction
Polarized neutron scattering is a very powerful tool for the analysis of magnetic structure
and neutron reflectometry is a powerful tool for the analysis of the structure of thin films.
Polarized neutron reflectometry (PNR) is the combination of these two techniques, which is
used mainly for the investigation of magnetic thin films, magnetic super-lattices, or any kind
of magnetic hetero-structure. To date, most PNR work has been conducted with a static
or quasi-static sample environment [1]. Here the resolution of time-resolved measurement is
limited to order of seconds even in state-of-the-art neutron reflectometer instrument owing to
the neutron intensity. Recently frequency-dependence PNR experiments have been conducted
to measure magnetization reversal in thin Fe films [2]. The magnetization reversal was observed
by measuring polarized neutron specular reflectivity under high-frequency external magnetic
field. It is an excellent approach to investigate the effect of interfaces on the magnetization,
however, sample applications and the frequency of the external magnetic field are limited.
Inelastic neutron scattering (INS) and quasi-elastic neutron scattering (QENS) are powerful
tools to study the dynamical structure of materials. If applied to the reflection geometry, in
the case of non-magnetic reflection from a thin film, the neutron energy change is limited in
the direction perpendicular to the film surface. Here we assume that incoherent scattering is
negligible. In order to analyze dynamical structure on the surface and the interface of thin films,
it is necessary to conduct the energy analysis of off-specular scattering neutrons. However, off-
specular scattering also contains elastic neutron scattering (ES) caused by in-plane structure
of a sample coming from interfacial roughness and/or inhomogeneity of composition. The
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intensity of ES is normally much larger than those of INS and QENS. Hence, we need to extract
neutrons undergoing the INS and QENS processes from off-specular signals caused by in-plane
structures. In case of magnetic reflection with polarized neutrons, the neutron energy change
is not limited in the direction perpendicular to the film surface. Because neutron magnetic
scattering processes describe interactions between a vector of neutron magnetic moment and
a vector of magnetic potential in a sample. By employing neutron polarization analysis, it is
possible to select velocity changed neutrons by magnetic INS and QENS processes. This implies
the possibility of a new research method for the in-plane spin dynamics of the magnetic film.
Here we point out the feasibility of direct observation of spin relaxation of nanomagnetic system
by employing a combination of PNR and the time-of-flight modulated intensity by zero effort
(TOF-MIEZE) technique. It is possible to use any magnetic sample environment including
frequency-dependence magnetic field. To our knowledge, there have been no previous attempts
to measure to measure spin relaxation of the in-plane magnetization up to order of nanoseconds
with neutrons. In this paper, we show 200 kHz TOF-MIEZE signals of neutrons reflected by the
Fe thin layer and Fe/Si multilayer as a feasible study for the study of nanomagnetic dynamics.

2. Features of the TOF-MIEZE spectrometer
The neutron spin echo (NSE) technique [3, 4, 5] is a unique spectroscopic method to investigate
the slow dynamics of molecules and molecular assemblies. It directly measures the intermediate
scattering function S(Q, τ), where Q and τ are the momentum transfer of neutrons and Fourier
time, respectively, with very high neutron energy resolution independent of the resolution of the
incident neutron beam. With a pulsed neutron source, the NSE technique makes it possible to
scan a wide spatiotemporal space with exceptional efficiency because both Q and τ depend on
the neutron wavelength λ, which can be evaluated by the TOF technique. The Materials and
Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex
(J-PARC) is one of the major neutron/muon experimental facilities in the world. Moreover,
the Kyoto University and High Energy Accelerator Research Organization (KEK) are jointly
installing two types of NSE spectrometers at BL06 at the MLF, a neutron resonance spin echo
instrument (NRSE) [6] and a MIEZE [7]. The typical scientific target for the NRSE is to explore
slow dynamics in soft matter, which requires a high-energy resolution with a small sample,
whereas that for the MIEZE is hard matter, which requires a medium-energy resolution with a
flexible sample environment, including a strong magnetic field. With the two spectrometers, it
is possible to cover a wide spatiotemporal range with various sample environments. We named
the spectrometers ”VIN ROSE” (VIllage of Neutron ResOnance Spin Echo spectrometers). The
purpose is to generate a new field of spectroscopic methods to investigate the slow dynamics of
nanostructures in various materials. Both the NRSE and MIEZE make use of neutron resonance
spin flippers and state-of-the-art neutron optics, which enabled us to design and install compact
and multiple spectrometers in a narrow space. The performance of the supermirror guiding
system for the VIN ROSE has been evaluated [8] and a 400-kHz TOF-MIEZE signal has been
obtained [9]. A simple MIEZE spectrometer consists of a polarizer, a pair resonance spin flippers
(RSFs), an analyzer, and a detector. There is no optical component between the sample and
detector and it is easy to combine MIEZE by using the PNR and small-angle neutron scattering.
The contrast of the MIEZE signal is extremely sensitive to differences between the lengths of
neutron flight paths. In a continuous beam, the contrast dramatically decays by a deviation
from MIEZE condition due to the misalignment from the optimal position of RSFs and detector.
However, by using the TOF technique with a short-pulsed neutron beam, the misalignment effect
does not change the contrast of the TOF-MIEZE signal but does change the effective frequency
[10]. This means that the TOF-MIEZE signal is robust against misalignments in the instrument
and it is possible to correct the misalignment with a high accuracy. However, the geometrical
problem with high energy resolution measurement is still critical when the sample size and
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scattering angles are large [11]. On the other hand, with TOF-MIEZE reflectivity measurements,
the geometrical problem is negligible even under high energy resolution measurement. There
is only one spin state at the sample position and it is possible to employ polarization analysis
after the sample.

3. MIEZE technique with reflectometry
The schematic of the TOF-MIEZE reflectometer and energy diagram at BL06 at the J-PARC
MLF are shown in Fig. 1. In the MIEZE mode, both RSF1 and RSF2 are operated as π/2-
flippers with frequencies of ω1 and ω2, respectively. The MIEZE signal is observed as a function
of the phase difference between two energy states. The neutron intensity at the detector position
is modulated by

Id(td) =
1 + cosϕ(td)

2
,

ϕ(td) = (ω2 − ω1)td −
ω1

v
L12 +

ω2 − ω1

v
(L2s + Lsd) (1)

where ϕ(td) is the net phase difference between two energy states at the detector as a function of
td. The parameters td and v, are time at the detector and incident neutron velocity, respectively.
As shown in Fig. 1(a), L12 is the flight path length between RSF1 and RSF2; L2s is the flight path
length between RSF2 and the sample position; Lsd is the flight path length between the sample
position and detector. In the case of the MIEZE echo condition, ω1L12 = (ω2 − ω1)(L2s + Lsd),
Eq.(1) is given by ϕ(td) = (ω2 − ω1)td.

RSF2(    )RSF1(    )Polarizing

system

Sample

Detector

Guide field

Figure 1. (a) Schematic of the experimental setup and (b) Energy diagram of the TOF-MIEZE
reflectometer at BL06 at J-PARC MLF.

The energy resolution of an MIEZE spectrometer is also described by the Fourier time in the
same as for NSE and NRSE spectrometers. The MIEZE Fourier time τ , is given by

τ =
h̄Lsd

mnv3
(ω2 − ω1) (2)
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where mn is the mass of the neutron and h̄ is the reduced Planck constant. Here the
phase difference with the sample in the MIEZE condition is given by the following equation:
ϕ(td) = (ω2 − ω1)(td +

δLsd
v ), where L12, L2s, and Lsd are 2.4, 0.75, and 1.2 m in the MIEZE

condition, respectively. The absolute value |δLsd/v| decays the contrast of the MIEZE signal
without neutron velocity change by a sample. Therefore it should be smaller than half of period
of the MIEZE signal.

Figure 2. Schematic of the
sample-detector geometry (θ−
2θ configuration) for reflec-
tometry and a possible devia-
tion of the path length, δLsd,
at same detector position.

Let’s us consider a geometrical problem with MIEZE reflectometry. Here we focus on path
length deviations in the reflection. A sample-detector geometry, which is called the θ − 2θ
configuration, is shown in Fig. 2. The deviation of the path length, δLsd, is described by the
absolute value of the difference between path lengths at the sample detector position.

δLsd = Lsd −

√(
Lsd cos 2θ −

d

cos θ

)2

+ (Lsd sin 2θ)2 +
d

cos θ

 (3)

With neutron reflectometry, the sample thickness and incident angle are smaller than 10 µm
and 10◦, respectively. In this experimental setup (Lsd =1.2 m) and Eq.(3), the deviation of the
path length δLsd is 0.61µm. Here we consider extra deviation of the path length due to the

spatial resolution of detector. Which is given by
√
L2
sd + (δs/2)2 − Lsd ∼ 0.1µm, where δs is

the spatial resolution of detector and the deviation of the path length δLsd is smaller than 1µm.
The period of a 10-MHz MIEZE measurement with 20 nm wavelength neutrons is estimated to
be 19.8 µm and it is 20 times larger than the deviation of the path length. Here the Fourier time
given by Eq.(2) is estimated to be 613 ns. The geometrical problem with MIEZE reflectometry
is negligible.

4. Experimental results and discussion
A typical TOF-MIEZE signal in which the effective frequency is 200 kHz, is shown in Fig.
3(a). The total flight path length from the neutron source to the detector is 23 m. In this
experimental setup, the effective Fourier time was evaluated to be from 65 ps∼2.6 ns, at time-
of-flights, from 20to ∼70 ms, which corresponds to the neutron wavelengths between 0.35 and
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(a)

(b)

(c)

(d)

Figure 3. (a) Typical TOF-MIEZE signal with an effective frequency of 200 kHz at the BL06
at J-PARC MLF. The details of TOF-MIEZE signals in three TOF regions from (b) 30∼30.05
ms, (c) 40∼40.05 ms, and (d) 50∼50.05 ms.

1.2 nm, respectively. The frequencies of the oscillating fields of RSF1 and RSF2 were 200 and
400 kHz, respectively. Sinusoidal MIEZE signals were clearly observed with a time range of 50
µs in the whole TOF range as shown in Fig. 3(b)∼(d). By using a fast Fourier transform (FFT)
over the whole TOF frame (80 ms), a clear peak in a power spectrum was observed at 200 kHz.
Under the same instrumental condition, the TOF-MIEZE signal of up spin neutrons reflected
by the thick iron film in which thickness 50 nm under an external field of 60 mT was observed
(Fig. 4(a)). Here, the up spin and down spin are parallel and antiparallel to the magnetic guide
field, respectively. The FFT analysis shown in Fig. 4(b) confirmed that the effective frequency
of the MIEZE signal kept 200 kHz. Also, sinusoidal MIEZE signals were clearly observed with a
time range of 50 µs even in the TOF region presenting Kiessig fringes shown in 4(c), interference
originated from the film thickness. There is no evident decay in the contrast of the TOF-MIEZE
signal because it is thick and the external magnetic field is sufficiently strong to magnetically
saturate (4(d)).

In order to select spin flipped and non-flipped neutron intensities, a second analyzer system
was installed around the sample. The analyzer system consists of a π flipper and m=4
Fe/SiGe3(Si) magnetic supermirror [12]. The additional π flipper was placed between the
first analyzer and sample. The second analyzer mirror, used in a transmission geometry, was
placed after the sample. Here, down spin neutrons can be transmitted through the second
analyzer. A magnetic guide field was extended from the first analyzer to the second analyzer
in order to avoid the depolarization of the neutron spin. Under these experimental condition,
(P ⊥ Q), the polarization vector of neutron P , is perpendicular to the scattering vector Q.
The magnetic scattering produces spin-flip scattering. When an incoherent nuclear scattering
is negligible, the intensities of magnetic (IMag) and nuclear scatterings (INucl) are given by

the following equations: IMag = 2IOFF , INucl =
(
INucl +

IMag

2

)
− IMag

2 = ION − IOFF
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Figure 4. (a) Measured TOF-MIEZE signal reflected by the Fe thick film under an external 60-
mT magnetic field. (b) The power spectrum of the TOF-MIEZE signal (c) Neutron reflectivity
of up spin neutrons derived from the average of the TOF-MIEZE signals. (d) TOF-MIEZE
signals from 45.65∼45.7 ms in the TOF region.

where the intensities of the non-spin flip (ION ) and spin-flip scattering (IOFF ) are with and
without π-flip, respectively. We attempted to prepare a Fe/Si multilayer in which the Fe
layer is superparamagnetic at room temperature. The multilayer was fabricated using an ion-
beam sputtering machine at the Institute for Integrated Radiation and Nuclear Science, Kyoto
University [13]. The nominal thicknesses of Fe and Si were 0.3 and 11.7 nm, respectively. The
number of bilayers was 500. The TOF-MIEZE signals of spin-flip and non-spin flip neutrons
reflected at the Fe/Si multilayer surface are shown in Fig. 5(a) and Fig. 5(b). The strength
of the external magnetic field at the sample position was less than 1 mT. The distinct Bragg
peaks of non-spin flip neutrons and power spectrum converted from the TOF-MIEZE signal are
shown in Fig. 5(a). The peak at the power spectrum corresponds well to the effective frequency
of 200 kHz set by RSF1 and RSF2. In Fig. 5(b), it is also observed that the distinct Bragg
peaks of spin-flip neutrons and power spectrum were converted from the TOF-MIEZE signal.
Similarly, the peak at the power spectrum corresponds to the effective frequency of 200 kHz.
The coincidence of these frequencies indicates that the echo condition of the MIEZE signal,
sample geometry, and static magnetic field are satisfied. By accumulating individual oscillations
of the TOF-MIEZE signal within a few milliseconds, it is possible to evaluate its contrast [14].
However, it is not easy to quantitatively show the contrast of the TOF-MIEZE signal because
of the low neutron intensity and relatively high frequency of 200 kHz. Thus we tested a new
procedure to extract contrast of TOF-MIEZE signal precisely as follows. The contrast of MIEZE
signal C is defined in equation 4,

C =
A

B
=

2|ΣνNdiv
k=0 Ik exp(−2iπ k

Ndiv
)|

ΣνNdiv
k=0 Ik

(4)
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Figure 5. (a) Power spectra and (b) TOF-MIEZE signals reflected by the Fe/Si multilayer
with non-spin flip (ION ). (c) Power spectra and (d) TOF-MIEZE signals reflected by the Fe/Si
multilayer with spin flip (IOFF ).

where A is twice of the amplitude of the MIEZE signal, B is the average neutron intensity, ν is
the number of the MIEZE signal period, Ndiv is the division number of the MIEZE signal period
and Ik is the neutron intensity at the micro region of k. ΣνNdiv

k=0 Ik represents a summation of the

neutron intensity in the micro region. |ΣνNdiv
k=0 Ik exp(−2iπ k

Ndiv
)| represents an absolute value of

a discrete Fourier transform (DFT) for the neutron intensity. The amplitude of the DFT (half
of the parameter A) corresponds to the number of events which are oscillation components of
the MIEZE signal. In the ideal conditions that all events are regarded as oscillation components
of the MIEZE signal, the Contrast is close to 1. The parameter A and the parameter B are
treated statistically from the definition. As an error handling, the error of the Contrast is based

on an error propagation as follows, σc =

√
σ2
A

B2
+

A2σ2
B

B4
=

√
2A

B2
+

A2

B3
where σA is the error of

the parameter A, σB is the error of the parameter B. σA and σB represent a
√
2A and a

√
B,

respectively.
Figure 6 shows the contrast of MIEZE signal estimated as a function of time of flight, where

the time bin was 0.5 µs, Ndiv=10 and ν=160 in Eq.(4). The region of interest (ROI) area in
the detector is different from that in Fig. 5, and it is determined by the following condition:
the number of neutrons is not zero and the 200kHz -MIEZE oscillation can be observed. In
the ROI area, the instrumental background intensity owing to imperfectness of the additional
pi flipper and second analyzer also makes 200kHz-MIEZE oscillation because the background
intensity came from non-spin flip component. We analyzed it paying attention to the neutron
statistics and show only statistically significanat data shown in Fig. 6 in the TOF time rage of
30∼34 ms. We observed decay of contrast of MIEZE signal spin flipped neutrons by the Fe/Si
multilayer. The neutron wavelength at time of flight 32 ms was 0.55 nm and the Fourier time
was estimated to be 0.26 ns. This result shows the combination of the TOF-MIEZE technique
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Figure 6. The contrast
of MIEZE signal with di-
rect beam, reflected by Fe/Si
multilayer with non-spin flip
(ION ) and spin flip (IOFF ).

and polarized neutron reflectometry enables us to study the nanomagnetic spin dynamics in a
thin film.

5. Summary
The combination of the polarized neutron reflectometry and TOF-MIEZE technique makes it
possible to study the spin dynamics of the in-plane magnetization in thin films. The experimental
results of TOF-MIEZE signals reflected by the Fe thin layer and Fe/Si multilayer with the
second analyzer system were shown. Employing the polarized neutron reflectometry, the effective
frequency of 200 kHz set by RSF1 and RSF2 is well reproduced as the peak of the power spectrum
converted from the TOF-MIEZE signal. Similarly, using the second analyzer system, even under
a sparse intensity, the effective frequency is also observed as the peak of the power spectrum
converted from the TOF-MIEZE signal. This means that the combination of the TOF-MIEZE
reflectometry and second analyzer system works similarly. Moreover, polarizing the supermirror
even with extremely thin magnetic layers, makes it possible to use it as the second analyzer. We
observed the decay of contrast of MIEZE signal spin flipped neutrons by the Fe/Si multilayer
with Fourier time 0.26 ns.
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