
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

On the carbuncle instability of the HLLE-type
solvers
To cite this article: Zhijun Shen et al 2019 J. Phys.: Conf. Ser. 1290 012026

 

View the article online for updates and enhancements.

You may also like
The Athena++ Adaptive Mesh Refinement
Framework: Design and
Magnetohydrodynamic Solvers
James M. Stone, Kengo Tomida,
Christopher J. White et al.

-

CRASH: A BLOCK-ADAPTIVE-MESH
CODE FOR RADIATIVE SHOCK
HYDRODYNAMICS—IMPLEMENTATION
AND VERIFICATION
B. van der Holst, G. Tóth, I. V. Sokolov et
al.

-

Magnus: A New Resistive MHD Code with
Heat Flow Terms
Anamaría Navarro, F. D. Lora-Clavijo and
Guillermo A. González

-

This content was downloaded from IP address 18.116.62.45 on 10/05/2024 at 10:53

https://doi.org/10.1088/1742-6596/1290/1/012026
https://iopscience.iop.org/article/10.3847/1538-4365/ab929b
https://iopscience.iop.org/article/10.3847/1538-4365/ab929b
https://iopscience.iop.org/article/10.3847/1538-4365/ab929b
https://iopscience.iop.org/article/10.1088/0067-0049/194/2/23
https://iopscience.iop.org/article/10.1088/0067-0049/194/2/23
https://iopscience.iop.org/article/10.1088/0067-0049/194/2/23
https://iopscience.iop.org/article/10.1088/0067-0049/194/2/23
https://iopscience.iop.org/article/10.3847/1538-4357/aa7a13
https://iopscience.iop.org/article/10.3847/1538-4357/aa7a13
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsvWsZ3iduOLIhpQH-VDux8XiI5A55mT-MR-geu_Rqw4ONRb4_yGlUKY-PZZXFQuTg3H90pI7Kmfz3uZSD7GW3viZzVE2zMlYqe940gS9ZcFs-lKZlXbPPr4VWME5OqYQ6Rref8xeMv2m6aL9lmqWbv6pjHqmBP2phxJbTPRi0Qlradcxurz4zWE--JHX57rriFjoEiSQp7ILmto8k6RWiq1Lv2wWSXz8N2TOdE_gNEOi_lqek677xpOE1uvLsi1BmkRwcAu-n2EWURWhpHXoKGLgWnj8GaLa3wKLdUQM8bDgiTF6EdEecTx2JwxqPI1TB3KpiAbyGOdyecUXy0dSxNEDXZ_Aw&sig=Cg0ArKJSzOZznvX3vLzx&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

XXX IUPAP Conference on Computational Physics

IOP Conf. Series: Journal of Physics: Conf. Series 1290 (2019) 012026

IOP Publishing

doi:10.1088/1742-6596/1290/1/012026

1

On the carbuncle instability of the HLLE-type solvers

Zhijun Shen, Jian Ren, Xia Cui
Laboratory of Computational Physics, Institute of Applied Physics and Computational
Mathematics, P. O. Box 8009-26, Beijing 100088, China

E-mail: shen zhijun@iapcm.ac.cn, ren jian@iapcm.ac.cn, cui xia@iapcm.ac.cn

Abstract. The carbuncle phenomenon is a numerical instability that affects the numerical
capturing of shock waves when low-dissipative upwind scheme is used. This paper investigates
shock instabilities of the HLLE-type methods for the Euler equations under the strong shock
interaction, where the HLLE-type methods include the HLLE, HLLC, HLLEM, HLLCM and
HLLEC Riemann solvers with specific wavespeed estimates. Based on a matrix stability analysis
for two dimensional steady shocks, a new factor to influence carbuncle phenomenon is pointed
out and the choice of the signal velocity plays an important role. A numerical flux function with
wave velocity estimates which can crisply resolve shocks seems to be vulnerable to the shock
anomalies even if the numerical fluxes to be regarded to be free from the carbuncle phenomenon.
A suggestion to the choice of the wave speed is proposed when calculating strong shock wave
problems.

1. Introduction
Shock-capturing Godunov schemes have become a mainstay in aerospace calculations and also
in a range of other fields such as astrophysics, space physics, fusion and several others. This is
due to their low numerical dissipation, their high level of robustness, and their ability to exactly
capture discontinuities. However, such upwind Riemann solvers have their own peculiar flaws.
One of the well-known flaws is the carbuncle phenomenon.

The carbuncle phenomenon is a numerical instability that affects the numerical capturing of
shock waves. It was first reported by Peery and Imlay [11] when they calculated a high speed
flow interacting with a blunt body. Quirk [12] found that the carbuncle instability was also
related to the even-odd decoupling problem when he simulated planar moving shocks. Since
the discovery of this pathology, one may associate the carbuncle instability with several other
instabilities involving the propagation of shocks on a multidimensional computational mesh. For
example, a shock moving on a multidimensional mesh with skewed mesh lines [3] or uneven mesh
spacing [13] [20] will also show deficiencies. In all such circumstances, overcoming the carbuncle
instability also contributes to overcome all these other deficiencies associated with strong shocks
moving on multi-dimensional meshes.

In the procedure of seeking the cause of shock instability, the first stability analysis was
offered by Quirk [12] who realized that the instability was triggered by an exact representation
of the linearly degenerate intermediate waves. Riemann solvers like the HLLE solver, which
does not resolve intermediate waves, are always stable, while low dissipative Riemann solvers
like the Roe-type solver were unstable unless a large dose of dissipation was introduced by using
Harten’s fix [7]. Quirk constructed a hybrid method to cure shock instability. It switches to a
more dissipative Riemann solver in the vicinity of shock wave to efficiently dissipate intermediate
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waves, and restores low dissipative scheme, like Roe Riemann solver, on other domains. Such
healing has a hypotheses that the high dissipative scheme is always stable in calculations.

Sanders et al.[14] noticed that the dimension by dimension extension of one-dimensional
upwind schemes to the multidimensional equations of gas dynamics often leads to poor results
when computing strong shocks. They showed that this failure is an instability which is the
result of inadequate crossflow dissipation implied by strictly upwind schemes. Further studies
show that the carbuncle phenomenon mainly arises from the perpendicular cell face of shock
wave [9],[15] [19]. Adding appropriate amount of dissipation on these faces is conductive to
damp out the carbuncle phenomenon. Related numerical algorithms involve the modification
of linear shear wave. Two concrete Riemann solvers are the HLLCM scheme [16] and HLLEC
scheme [19]. They originate from the unstable HLLC [18] and the HLLEM flux functions [5],
but illustrate very good stability since shear waves in original schemes are smeared or deleted.

Only a few works realized that the normal dissipation is also source of instability. Kitamura
et al. [8] made some comparisons to a slew of Riemann solvers and found that “there are
at least two kinds of shock instabilities at work: one is one-dimensional (1-D) mode and the
other is multidimensional mode”. If a scheme is unstable in 1-D, then it remains unstable in
two dimensional calculation. However, there are also some puzzling behaviors for the above
conclusion. Actually, some schemes in [8] (EC-Roe(α = 0.2),AUSMPW+, RoeM2) are 1D
unstable but 2D stable (see Table 2 in [8]). In [19], the HLLEC flux has similar performance,
see Table 3 in [19]. Therefore corresponding connection between 1D and 2D instability is not
clear.

In this paper, we discuss the stability of HLLE-type numerical fluxes, including HLLC,
HLLCM, HLLEM and HLLEC. One of the common characters of these numerical fluxes is
that the right-going and left-going wave velocities need to be given artificially. There are many
methods to estimate the speeds. The most popular approach is to estimate them directly.
Davis [2] proposed an exceedingly simple algorithm by comparing the maximum and minimum
characteristic velocities of both states. He further suggested that one could estimate the shock
velocities from an intermediate state based on the Roe average. This was implemented as a
wavespeed algorithm due to Einfeldt et al.’s work[5]. For the HLLC flux, Batten et al. [1] showed
that Einfeldt et al.’s estimates can resolve contact waves exactly and guarantee the method is
positively conservative. Especially, the algorithm “has proved extremely robust and can yields
the exact velocity for isolated shocks”, and thus is recommended for practical computations [1].
The classical HLLEM adopts Einfeldt et al.’s wave algorithm naturally, and it also possesses
above discontinuity resolving properties after selecting the appropriate contact velocity, see [10].

However, the HLLC and HLLEM Riemann solvers were found to be unstable to the carbuncle
instability due to their full family of waves construction. While the HLLCM flux [16] is a
modification of the HLLC flux and the HLLEC [19] is one of the HLLEM flux. The main
modification focus on smearing or deleting the linear shear wave. According to the analysis in
[16] and [19], the HLLCM method and HLLEC method do not suffer from carbuncle instability.
In particular, in almost all literatures, the HLLE scheme is believed to be carbuncle free.

In this paper, we will report some numerical experiments with strong steady shock waves, in
which instability phenomena occur for the three so-called ‘stable’ numerical fluxes: the HLLE,
HLLCM and HLLEC schemes equipped with Einfeldt et al.’s wavespeed algorithm. As a simple
cure, Davis’s wavespeed algorithm is adopted and greatly improves the stability of numerical
calculations. A matrix stability analysis is put forward to validate the finding.

The outline of the paper is as follows. In Section 2, the governing equations and some Riemann
solvers are introduced. An unstable phenomenon is described in Section 3, the computing effects
using two different wavespeed estimates are illustrated in the section. In Section 4, a linear
matrix stability analysis is proposed, and the stability of two choices is described. In particular,
an extreme counterexample is given to illustrate the limitation of the two classical wavespeed
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algorithms. Finally, the conclusions are summarized in Section 5.

2. Governing equations and numerical methods
The governing equations for inviscid flow in two dimensions are as follows:

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= 0, (1)

where the state vector and flux vectors are

U =


ρ
ρu
ρv
ρE

 , F(U) =


ρu

ρu2 + p
ρuv

ρEu+ pu

 , G(U) =


ρv
ρuv

ρv2 + p
ρEv + pv

 ,

where ρ, p, E are the fluid density, pressure and total energy respectively, and u = (u, v) is the
fluid velocity. The equation of state is in the form

p = (γ − 1)ρe = (γ − 1)ρ

[
E − 1

2
(u2 + v2)

]
,

where γ is the specific heat ratio and e is the specific internal energy.
For simplicity assume that the boundaries of the computational domain are aligned with the

coordinate directions x and y. Consider a typical finite volume or computational cell Ωi,j of
dimensions ∆x×∆y. To each intercell boundary there corresponds a numerical flux.

A semi-discrete finite volume method to solve (1) reads

dUi,j

dt
= −

Hi+1/2,j −Hi−1/2,j

∆x
−

Hi,j+1/2 −Hi,j−1/2

∆y
, (2)

where the numerical fluxes Hi+1/2,j and Hi,j+1/2 are approximate intercell ones of F(xi+1/2, yj)
and G(xi, yj+1/2) respectively. They can be obtained by many methods. In this paper, we
concentrate on the HLLE-type Riemann solvers.

2.1. Some approximate Riemann solvers
When discretizing the equations (1), Riemann solver is an important ingredient in numerical
methods. The HLL Riemann solver [6] is one of lots of Riemann solvers [17]. It approximates
the solution of Riemann problem with two waves propagating at speeds of SL and SR. They
are the lower and upper bounds for the physical signal speeds with which the information of the
initial discontinuity is transported. Given the initial conserved states UL and UR of a Riemann
problem, the numerical flux of the HLL approximate Riemann solver can be expressed as

HHLL =
S+
RFL − S−

LFR + S+
RS

−
L (UR −UL)

S+
R − S−

L

, (3)

with S−
L = min(SL, 0) and S+

R = max(SR, 0). FL and FR are fluxes on the left and right sides.
To satisfy the entropy and the positivity conditions, Einfeldt et al.[5] suggested adequate

bounds by making use of the Roe-averaged eigenvalues,

SL = min(uL − aL, û− â), SR = max(uR + aR, û+ â), (4)

where aL and aR are the sound speeds of the left and the right states. The superscript ˆ denotes
the Roe-averaged values throughout this paper. With the wavespeed estimates, the HLL flux is
also called HLLE scheme. It needs to point out that the HLLE flux has too much dissipation
and has difficulty to simulate practical problems. Many modifications have done to retain the
shear wave and entropy wave.
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2.2. HLLEM and HLLEC schemes
The HLLEM scheme [5] is an modified scheme of the HLLE flux, which improves the resolution
of contact discontinuity by reusing the information of contact discontinuity in terms of modifying
the intermediate state. The numerical flux function of the HLLEM scheme can be written by

HHLLEM = HHLLE − S+
RS

−
L

S+
R − S−

L

(δ2α̂2r̂2 + δ3α̂3r̂3), (5)

where r̂k correspond the right eigenvectors of the flux Jacobian Â evaluated at the intermediate
states Û. The wave strengths α̂k are the approximate values of the projection from UR −UL

onto r̂k, i.e.,

UR −UL =
4∑

k=1

α̂kr̂k.

δk are the anti-diffusion coefficients defined by Park et al. [10],

δ2 = δ3 =
â

|û|+ â
, (6)

which has resolve the stationary contact discontinuity exactly.
However, two main problems have been reported for this scheme. One is multidimensional

shock instability and another is nonexistence of strong receding flows. The HLLEC flux is a
modification of the HLLEM one proposed by Xie et al. [19],

HHLLEC = HHLLE − S+
RS

−
L

S+
R − S−

L

δ2α̂2r̂2. (7)

In this formula, the shear wave δ3 = 0 has been dropped off but the contact wave keeps
unchanged. In [19], the HLLEC flux is regarded as free from shock instability.

2.3. HLLC-type schemes
The HLLC method [18] is considered to be the most preferred finite difference method because
of its simplicity and ability to capture discontinuities accurately. In the Riemann solver, four
constant states, which can be denoted from left to right UL,U

∗
L,U

∗
R,UR, are separated by

signal velocities SL and SR and contact velocity S∗. The flux function can be expressed by

HHLLC =


FL, if SL ≥ 0,
FL + SL(U

∗
HLLC,L −UL), if SL < 0 ≤ S∗,

FR + SR(U
∗
HLLC,R −UR), if S∗ < 0 < SR,

FR, if SR ≤ 0,

(8)

where the conserved vectors in the star region are

U∗
HLLC,K = ρ∗K


1
S∗
vK
E∗

K

 = ρ∗K


1
S∗
vK
E∗,1d

K + 1
2v

2
K

 , for K = L,R, (9)

in which the total energy is decomposed into sums of a pure one-dimensional normal quantity

E∗,1d
K and a tangent kinetic energy v2K/2. Introduce following notations

αL = ρL(SL − uL), αR = ρR(SR − uR),



XXX IUPAP Conference on Computational Physics

IOP Conf. Series: Journal of Physics: Conf. Series 1290 (2019) 012026

IOP Publishing

doi:10.1088/1742-6596/1290/1/012026

5

then the contact velocity, density and total energy in the star region can be written as

S∗ =
αRuR − αLuL + pL − pR

αR − αL
, (10)

ρ∗K =
αK

SK − S∗
, E∗,1d

K = eK + (S∗ − uK)

(
S∗ +

pK
αK

)
, K = L,R. (11)

In order to enhance the stability, authors in [16] introduce the shear viscosity to the HLLC
scheme. The modified algorithm is called the HLLCM Riemann solver and has similar flux form
with (9),

HHLLCM =


FL, if SL ≥ 0,
FL + SL(U

∗
HLLCM,L −UL), if SL < 0 ≤ S∗,

FR + SR(U
∗
HLLCM,R −UR), if S∗ < 0 < SR,

FR, if SR ≤ 0.

(12)

Here, the conserved vectors in star states are

U∗
HLLCM,K = ρ∗K


1
S∗
v∗

E∗
HLLCM,K

 = ρ∗K


1
S∗

αRvR−αLvL
αR−αL

E∗,1d
K + 1

2
αRv2R−αLv

2
L

αR−αL

 , K = L,R. (13)

The main difference between the HLLC flux and the HLLCM flux is in the tangent velocity.
The change of total energy is along with the variation of tangent velocity.

3. An instability phenomenon and cure
Shock instability of a numerical scheme means the shock front might be destroyed by a very slight
perturbation. Such perturbation might come from grid, initial values, boundary conditions, even
just rounding errors. In what follows, we use numerical experiments to illustrate some solution
behaviors of these HLLE-type schemes.

The raw problem is a steady normal shock wave. The initial data are given by the exact
Rankine-Hugoniot solution in x-direction. The upstream and downstream states are

WL = (ρL, uL, vL, pL) = (1,
√
γMa, 0, 1) , x < 0.1, (14)

and the downstream state is

WR = (ρR, uR, vR, pR) =

(
f(Ma),

√
γMa

f(Ma)
, 0, g(Ma)

)
, x > 0.1, (15)

where Ma = uL/aL is the upstream Mach number of the incoming flow,

f(Ma) =

(
2

γ + 1
M2

a +
γ − 1

γ + 1

)−1

, g(Ma) =
2γ

γ + 1
M2

a − γ − 1

γ + 1
.

The computational domain is on a rectangular one of [0, 0.2]× [0, 1] in the x-y plane, and the
mesh has 20× 100 uniform cells. The specific heat ratio γ = 1.4, Mach number Ma = 20. The
signal velocity estimates adopt Einfeldt et al.’s method (4). A slight random perturbation of
the relative order 10−15 is added to the downstream states. The upper and bottom boundary
conditions are the outflow. The boundary conditions of the left and right side are the inflow
and outflow respectively.
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Figure 1. The density contours for 2D steady flow with Einfeldt et al.’s wave velocity estimates.
The grid resolution is 20×100 cells. Thirty-one equally spaced contour lines from ρ = 1 to ρ = 6.
From left to right: HLLEM, HLLC, HLLEC, HLLCM, HLLE. All of them are not stable.

For this one-dimensional shock problem, the shock wave front should remain stationary. The
density contours using the schemes of HLLEM, HLLC, HLLEC, HLLCM and HLLE are displayed
in Fig. 1. The shock positions in all schemes move and thus deviate from the correct steady state
solution. Some move to the left and some to the right. Notice that this is a multi-dimensional
phenomenon since such moving never been observed in a pure one-dimensional calculation(grid
number is 1 in the y-direction). The carbuncle phenomenon has caused the normal shock to
form a bulge which is unphysical.

Such solution behavior is a little surprising. It is well known that the HLLEM and HLLC
flux are both able to exactly capture the contact and shear discontinuities, and thus they are
susceptible to the carbuncle problem. But for the HLLEC, HLLCM and HLLE fluxes, the shear
viscosities have been manipulated to the largest extend. These shear viscosities provide a kind
of multi-dimensional dissipative mechanism on the face perpendicular to the shock, and they
should suppress the drawbacks.

One knows that a good aspect ratio of the grid can alleviate the instability. If we add more
cells in a direction normal to the shock, the anomalies should be cured partly. Fig. 2 illustrate
the contour plots of density using the mesh with 40 × 100 cells. In this experiment, the first
two fluxes still suffer from the carbuncle phenomena at once. For other schemes, the shock
resolutions are enhanced and the sawtooth forms of the unstable mode disappear. However, the
fluxes except the HLLE one still yield wrong shock velocity. For the HLLE flux, if we increase
upstream mach number, for example, Ma = 40, the unstable phenomenon will appear again (not
shown here). This numerical experiment shows that the refinement of the grid indeed plays an
important role in alleviating numerical oscillation but does not cure the problem completely.

Clearly, the numerical experiments valid that there are at least two kinds of shock unstable
mechanism in above numerical fluxes [8]. The primary one is due to lack of multi-dimensional
dissipation in the shear direction of the shock. It can lead to the calculation collapse at once,
just like the case in the HLLEM and HLLC schemes. The secondary might be from a kind of
normal direction unstable mechanism of shock. We do not call it one dimensional unstable mode
since such instability never been observed in pure one dimensional calculation. Such instability
can be seen only when the multi-dimensional dissipation has been built in numerical flux, and
results in wrong shock location, as shown in the fluxes of the HLLEC, HLLCM and HLLE.

In order to cure the second instability, we need add dissipation in one dimensional flux
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Figure 2. The density contours for 2D steady flow with Einfeldt et al.’s wave velocity estimates.
The grid resolution is 40×100 cells. Thirty-one equally spaced contour lines from ρ = 1 to ρ = 6.
From left to right: HLLEM, HLLC, HLLEC, HLLCM, HLLE.
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Figure 3. The density contours for 2D steady flow with Davis’ wave velocity estimates. The
grid resolution is 20 × 100 cells. Thirty-one equally spaced contour lines from ρ = 1 to ρ = 6.
From left to right: HLLEM, HLLC, HLLEC, HLLCM, HLL(D). The last three fluxes are stable.

function. Here we adjust the signal velocities of the HLLC-type schemes.
Davis’s wavespeeds algorithm [2] is expressed as

SL = min(uL − aL, uR − aR), SR = max(uL + cL, uR + cR). (16)

In general, the estimates are more diffusive than (4) since they can not distinguish an isolated
shock.

The numerical results using Davis’s estimates (16) are displayed in Fig. 3. The HLLC flux
and HLLEM flux (we still use the same notations although different wavespeed estimates are
adopted) suffer from catastrophic instability once more, while anomalous phenomena in the
other fluxes disappear.

From above numerical experiments, we can draw some conclusions: the viscosity on the
perpendicular cell face of shock wave is not high enough to damp out normal direction numerical
instabilities. The grid refinement can modify bulge phenomenon but does not solve instability
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problem. A wavespeed algorithm which can crisply resolve shock seems to be vulnerable to the
shock anomalies, and Davis’s wave estimates have better performance in restraining instability.

4. A Linear Stability Analysis
In order to closer investigate the situation of shock instability, a kind of stability analysis method
with shock structure [4] is used to illustrates stability mechanism of numerical scheme.

4.1. Matrix Stability Analysis
A matrix-based stability analysis [4] has been used to study the occurrence of unstable modes
during the shock wave computation. Here we describe briefly the approach in [4] [15] for the
convenience of discussion.

Similar to numerical experiments in preceding section. Calculations are performed on a 2D
domain [0, 1]× [0, 1]. The grid is composed of regular Cartesian cells without perturbation. The
total cell number is M = I × J .

For Einfeldt et al.’s algorithm, the initial steady shock states are (14) and (15) but with an
equilibrium intermediate state,

W0
i,j =


WL, i < I/2, j = 1, · · · , J,
Wm, i = I/2, j = 1, · · · , J,
WR, i > I/2, j = 1, · · · , J,

(17)

where the intermediate state Wm locates on the Hugoniot curve based on the downstream state.
This means

ρm = αρρL + (1− αρ)ρR, pm =
(γ + 1)ρm − (γ − 1)ρR
(γ + 1)ρR − (γ − 1)ρm

pR,

um = uR + (pR − pm)

[
2/ρR

(γ − 1)pR + (γ + 1)pm

]1/2
, vm = 0,

where 0 < αρ ≤ 1.
For the stability analysis of a steady field, we assume that

Ui,j = U0
i,j + δUi,j , (18)

where U0
i,j is the conserved vector of W0

i,j and δUi,j is a small perturbation vector.
Substituting (18) into (2), and the numerical flux functions are linearized around the steady

mean value, then we finally get the error evolution of all M cells in the domain,

d

dt

 δU1,1
...

δUI,J

 = S

 δU1,1
...

δUI,J

 , (19)

where S is the stability matrix. Details can be referred to [4] and [15]. When considering only
the evolution of initial errors, the solution of the linear time invariant system (19) is δU1,1

...
δU0

I,J

 = expSt

 δU0
1,1
...

δU0
I,J

 . (20)

The perturbation remains bounded only if the maximum of the real part of the eigenvalues
of S is negative.

max(Re(λ))) ≤ 0. (21)
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Remark 1. Different from Einfeldt et al.’s wave algorithm, Davis’s wave speed estimates
can not provide a single point equilibrium state to form a stationary shock wave. We obtain the
stationary viscous profile U0

i,j by a pure one-dimensional numerical calculation, whose initial

value still adopts W0
i,j in (17).

4.2. Analysis results
After obtaining numerical steady shock, we may carry out stability analysis for all the HLLE-
type Riemann solvers. At first, we consider Einfeldt et al.’s algorithm.

By varying a parameter αρ, we check the stability of these solutions to perturbations. Just
like pointed out by Dumbser et al. in [4], when ρm → ρL(αρ → 1), instability might occur.
We represent stability domain of a flux function as (0, αmax) by the parameter αρ. The upper
bounds αmax of stability region depend on different numerical flux functions and strong shocks.
They are listed in the Table 1.

Table 1. The upper bounds αmax of stability region for Einfeldt et al.’s algorithm.
Mach HLLEM HLLC HLLEC HLLCM HLLE
10 0.382 0.382 0.816 0.816 0.935
20 0.375 0.375 0.810 0.810 0.928
30 0.374 0.374 0.809 0.809 0.927
· · ·
100 0.373 0.373 0.808 0.808 0.926

Table 1 indicates clearly all flux formulae have unstable regions to perturbations, including
the HLLE scheme. The upper bounds αmax of the HLLEM flux are identical to those of the
HLLC flux for same shock strength, and αmax of the HLLEC scheme are the same as the HLLCM
one. The ranking order is listed according to linear stability,

HLLEM = HLLC < HLLEC = HLLCM < HLLE.

With the increase of shock strength, the values of αmax decrease, and this means the unstable
region increases. A surprising finding is that the upper bounds have minor variations with the
increase of upstream Mach number. We conjecture that there exists a common critical density
jump to trigger local instabilities for different shock strengths.

Secondly, we implement a stability analysis for the HLLEC and HLLCM fluxes with initial
parameter αρ = 0.81. The maximal real parts of eigenvalues of stability matrix of the two
fluxes (vs. upstream Mach number) are displayed in Fig. 4. The analysis shows that Davis’s
wavespeed estimates are stable for any strength of shock wave while Einfeldt et al.’s wavespeed
estimates begin to destabilize with the increase of the upstream Mach number. Hence Davis’s
algorithm has better stability than Einfeldt et al.’s algorithm.

More analysis have been preformed but do not show here. For example, we employ Davis’s
wavespeed algorithm in x-direction flux and Einfeldt et al.’s in y-direction flux, or alternately,
use Einfeldt et al.’s wavespeed algorithm in x-direction flux and Davis’s in y-direction flux, then
the stability of the hybrid fluxes are always the same as the single flux equipped with x-direction
wavespeed algorithm. These results validate that the main factor to influence stability of the
HLLEC and HLLCM fluxes comes from the nonlinear acoustic wave in normal direction, rather
than comes from the insufficient viscosity in linear wave of transverse direction.

The mechanism why Davis’s algorithm can provide more stable calculation than Einfeldt et
al.’s algorithm is still not clear, but we try to understand it. From the first analysis, we know
that if the state of the intermediate point ρm is sufficiently close to the downstream state, then
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Figure 4. Maximal real part of eigenvalues of stability matrix vs. Mach number.

all Riemann solvers will be carbuncle free no matter how high the upstream Mach number.
From the second analysis and numerical experiments, Davis’s algorithm forces the intermediate
point to be close to the downstream state, or deceases the density jump in the shock layer. The
discussion of the concrete amount of the density jump in Davis’s algorithm is beyond the scope
of the article.

A natural question arises here: is Davis’s wavespeed algorithm applicable for all strong shock
waves? The reply depends on degree of density jump in a numerical shock layer. In an extreme
case, the answer is no. In fact, Davis’s wave speed estimates are not lower and upper bounds for
the physical signal velocity, therefore it is possible to fail in shock calculations. It is worthwhile
pointing out that Einfeldt et al. [5] stated incorrectly that (4) are lower and upper bounds for
the physical signal velocity. Here we give an concrete case to demonstrate the limitation of two
algorithms. Both of Einfeldt et al.’s algorithm and Davis’s algorithm might underestimate the
shock velocity.

Considering a Riemann problem with the following initial values,

WL = (ρL, uL, vL, pL, γL) = (1, 1, 0, 0, 3),

WR = (ρR, uR, vR, pR, γR) = (1,−1, 0, 0, 3).

In this collision problem, the shock strength is infinite and the shock speed is 2. Note that
the initial sound speed (in pre-shock) is 0, thus SL = min(uL, uR) = −1, SR = max(uL, uR) = 1
according to Davis’s wavespeed algorithm. In addition, Roe average states û = 0, ĉ = 0, thus
SL an SR in Einfeldt et al.’s estimates are identical with Davis’s estimates, which are smaller
than the physical shock wave velocity.

Except such extreme cases, Davis’s choice is rather robust in practice. We recommend this
method in simulations to strong shock wave problems.

5. Conclusions
In this paper, we discuss the stability of some HLLE-type schemes when calculating strong
shock wave problems. In particularly, we pay attention to those schemes which claimed to avoid
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carbuncle phenomenon. The conclusion about “only the eigenvalue associated to the linear
vorticity mode is responsible for the instability” seems not correct [4]. All HLLE-type Riemann
solvers, including those are believed to be free carbuncle anomalies, suffer from severe instability.
Nonlinear acoustic waves rather than linear vorticity and shear waves play an important role to
damp out instability.

A linear stability analysis shows that Einfeldt et al.’s algorithm, which is able to capture an
isolated shock exactly, is more susceptible to the carbuncle problem. While Davis’s estimates
have more dissipation and hence may overcome such numerical instability. We recommend to
use the simple David’s wave estimates when calculating strong shock wave problems, although
the algorithm has its limitation in some extreme situations.

Acknowledgments
This project was supported by the National Natural Science Foundation of China (U1630249,
11871112, 11471048), the Science Challenge Project (No. JCKY2016212A502) and the Founda-
tion of LCP.

References

[1] Batten P, Clarke N, Lambert C and Causon D M 1997 SIAM J. Sci. Comput. 18 1553-70
[2] Davis S F 1988 SIAM J. Sci. Stat. Comput. 9 445-73
[3] Dukowicz J K, Meltz B 1992 J. Comput. Phys. 99 115-34
[4] Dumbser M, Morschetta J M, Gressier J 2004 J. Comput. Phys. 197 647-70
[5] Einfeldt B, Munz C D, Roe P L, Sjogreen B 1991 J. Comput. Phys. 92 273-95
[6] Harten A, Lax P D and van Leer B 1983 SIAM Rev. 25 35-61
[7] Harten A 1983 J. Comput. Phys. 49 357-93
[8] Kitamura K, Roe P L, and Ismail F 2009 AIAA Journal, 47 44-53
[9] Pandolfi M and D’Ambrosio D 2001 J. Comput. Phys. 166 271-301
[10] Park S H, Kwon J H 2003 J. Comput. Phys. 188 524-42
[11] Peery K M and Imlay S T 1988 AIAA Paper 88-2924
[12] Quirk J 1994 Int. J. Numer. Meth. Fluid. 18 555-74
[13] Rider W J 2000 J. Comput. Phys. 162 395-410
[14] Sanders R, Morano E and Druguet M C 1998 J. Comput. Phys. 145 511-37
[15] Shen Z J, Yan W and Yuan G W 2014 Commun. Comput. Phys. 15 1320-42
[16] Shen Z J, Yan W and Yuan G W 2016 J. Comput. Phys. 309 185-206
[17] Toro E F 1997 Riemann Solvers and Numerical Methods for Fluid Dynamics (Berlin: Springer)
[18] Toro E F, Spruce M, Speares W 1994 Shock Wave 4 25-34
[19] Xie W J, Li W, Li H, Tian Z. Y, Pan S 2017 J. Comput. Phys. 350 607-37
[20] Xu K, Hu J 1998 J. Comput. Phys. 142 412-27


