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Abstract. In this work, a method to extract continuous symmetries of general second-order
linear ordinary differential equation is presented. The formalism is illustrated by two examples.

1. Introduction
Ordinary differential equations (ODEs) appear in many fields of Physics [1] and the analysis of
their symmetries plays an important role to extract information about the solutions of those
equations [2-4]. In this work, we have applied the Anderson-Kumei-Wulfman method [5-8] to
extract continuous symmetries of general second-order linear ordinary differential equation.

In general, we consider general homogeneous linear ODEs represented by the action of the
differential operator A(x) on a function f(x)

A(z) f(z) =0, (1)
where the differential operator A(x) is give by
A(x) = ag(x) + a1 (2)0y + a2 () Dpe + ... 2)

In this work we are interested in second order ODEs, then «; = 0, for i > 3.
A symmetry operator ) of equation (1) is defined as a differential operator that maps solution
of equation (1) into solution of the same equation, i.e.,

A(z)g(x) =0, (3)

where

9(x) = Q(z) f (). (4)

After assuming a particular form for the operators Q, condition (3) under constrain (1) defines
the symmetries of the ODE (1).
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2. Symmetry extraction
Let us start by considering a general second-order homogeneous linear ODE:

_d2y (x)—= (z)y(z) =0 (5)
12 + plx +g(x)y(z) = 0.
After substituting

) = f(a)exp |~ [ pl)de] (6

in equation (5), it is easy to see that the function f(z) satisfies the following differential equation:

2
T v f(@) =0, ™
where . L d
v(z) = q(x) — sz(x) — §£ (8)

We are interested in continuous symmetry generators of the form

A d

Q(z) = az) + Blz)—— (9)

for the equation (7). In other words, if f(x) is a solution of equation (7) then we need to find
the functions «a(z) and B(z) so that:

g(x) = Q(x) f (x) (10)
is also a solution of equation (7), i.e.
d2
d—a:g +v(z)g(z) = 0. (11)

Then differentiating equation (10), replacing in (11) and using that f(x) is lineally independent,
we obtain the following equation system:

o —v'p =208 =0, (12)
2d/ + 3" =0. (13)

The above system determines the conditions for a(z) and ((z) function.
Working on equations (12) and (13), we obtain:

B" +4vp + 208 =0. (14)

Equation (14) may be solved if v (z) function is known.
Let us assume that we know two particular solutions u; (z) and ug (x) for equation (7), i.e.

uf +vug =0 and  uh + vug = 0. (15)
Now, if we consider the following definition
¢ (z) = Crui + Couj + Cuguz, (16)
It is easy to show that ¢ (x) function satisfies the equation:

& + dvg + 20" = 0. (17)
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Therefore, equation (14) defines the 3 (x) function as
B (x) = Crui + Caus + Cauqus, (18)

where the functions u; (z) and ug (x) are two lineally independent particular solutions of equation

(7):

uf +vup =0 and  uf + vuy = 0.
However, it is only necessary to know one solution since the second linear independent solution
of equation (7) is obtained by the relation

ug () = uq (ZE)/ — . (19)
[ug (&)
Finally, having ((z) it is possible to obtain a(z) expansion coefficient by:
1
"

o = _iﬁm' (20)

3. Examples
The symmetry extaction method will be exemplified by two simple equations:

3.1. Example 1
Let us consider the simplest second order ODE:

fxx =0. (21)
Step 1: Find a particular solution of (21)

= OllL'. (22)
Step 2: Use equation (19), to build a second independent solution
=C = (5. 23
w=Cr | (Cre2 ~ 2
Step 3: Use equation (18) to obtain §(x) function
B(z) = Byaz* + By + Bax. (24)

Step 4: Use equation (13) to obtain a(z) function

/ 8"(6)d¢ = —Bya. (25)

Step 5: Build the symmetry generators
d A d A 5 d

Ql:%’ ngx%, Qs=z—z T (26)
Step 6: Check the symmetry property
AQ:if =0, AQxf=0, AQsf=0 (27)
Step 7: Find the algebra
[Q1,Q2) = Q1,  [Q1,Q3] =T —2Qs, [Q2,Qs] = Qs. (28)
And, introducing the new definition:
Ap=Q2-1/2, A =Q1, Ay =0Qs, (29)

the following commutation relations are obtained:

o, Ay) = + Ay, [Av, A ] = 24, (30)
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3.1.1. Symmetry Visualization: With the symmetry generators we can obtain the action
of this generators on the solution of the original ODE.
The general solution of ODE (21) is:
y =a+ bz, (31)

where a and b are arbitrary constants. Then the actions of A, A_ and Ay over (31) are

exp(AAg)(a +bzx) = a+ b, a=e"2, b=e"?p
exp(fA_)(a+bx) = a+ bz, a=a+0b
exp(fA)(a+bx) = a+ bz, b="b+0a

Figure 1 shows the plot of (31) for particular values of a and b constants. Figures 2, 3 and 4
show the action of Ay, A_ and Ay symmetry operators on solution (31) respectively.

Figure 3 Figure 4

3.2. Example 2
Let us consider the second order ODE:

foe + K =0. (32)
Step 1: Find a particular solution of (32)

uy = cos(kx). (33)
Step 2: Use equation (19) to build a second independent solution

ug = cos(kx) /z [cos((ilfm)]Q = singfka:). (34)
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Step 3: Use equation (18) to obtain §(x) function

B(z) = Cy cos?(kx) + Cy smk(k:x) +C3 sin(kz) cos(kx). (35)
Step 4: Use equation (13) to obtain a(z) function
alz) =Cq ksin(2kz) Cy sin(22kka:) + Cg%(l — cos(2kx)) + Cy. (36)
Step 5: Build the symmetry generators
Q1 = K sin(2kx) + (1 + cos(2lm:))di (37)
Q, = + — 1 cos(2kz) + 5 sin(2kz) ‘i, (38)
Q3 = o sin(2kz) + 555 (cos(2kz) — 1)L (39)
Step 6: Check the symmetry property
AQif =0 AQxf =0, AQzf=0. (40)
Step 7: Find the algebra
[Q1,Q2] = @1, [Q1.Q3] =1-2Q2, [Q2,Qs] = Qs. (41)
And, introducing the new definitions:
Ap=Q2-1/2, A =Q1, Ay =0Qs, (42)
the following commutation relations are obtained:
[Ag, Ax) = £As, [A, A ] =24, (43)

3.2.1. Matching examples 1 and 2: From the equation (33) and (34) we have the general
solution of EDO (32)

y = Ccos(kzx) + % sin(kx). (44)

Taking the limit & — 0 on equation (32), we obtain equation (21). In same way, this limit
reduces solution (44) to the solution of equation (21).

y=C1+ Cau. (45)

On the other hand, taking the limit £ — 0 on symmetry generators(37), (38) and (39), we obtain

. (k. 1 d d

. 1 1 d d
%13&0(@2) = 111]—% (5—5008(2k$)+%sm(2k3})d$)—33%,
fin(Qy) = Jim (5 sin(2ke) + 5 (cos(2ba) — 1)) = — a2
fim(@s) = Jim (g inhe) + g cos(ohe) ) = "

Showing the compatibility between the symmetry operators obtained in example 1 and 2
respectively. It is noteworthy that commutations relations (28) remain invariant under the
limit & — 0.



V International Symposium on Quantum Theory and Symmetries IOP Publishing
Journal of Physics: Conference Series 128 (2008) 012057 doi:10.1088/1742-6596/128/1/012057

4. Conclusion

A general method to find continuous symmetries of second-order linear ODEs has been presented.
To obtain the symmetry generators a particular solution of the ODE under study is required.
The method has been illustrated by two examples.
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