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Abstract. We show that the Inönü-Wigner contraction naturally associated to a reduction
chain s ⊃ s′ of semisimple Lie algebras induces a decomposition of the Casimir operators
into homogeneous polynomials, the terms of which can be used to obtain additional mutually
commuting missing label operators for this reduction. The adjunction of these scalars that
are no more invariants of the contraction allow to solve the missing label problem for those
reductions where the contraction provides an insufficient number of labelling operators.

1. Introduction
One of the main applications of group theoretical methods to physical problems is related to
classification schemes, where irreducible representations of a Lie group have to be decomposed
into irreducible representations of a certain subgroup appearing in some relevant reduction chain∣∣∣∣∣∣

s ⊃ s′ ⊃ s′′ ...
↓ ↓ ↓

[λ] [λ′] [λ′′] ...

〉
. (1)

This is the case for dynamical symmetries used for example in nuclear physics, where one
objective of the algebraic model is to describe the Hamiltonian (or mass operator in the
relativistic frame) as a function of the Casimir operators of the chain elements. The
corresponding energy formulae can the easily deduced from the expectation values in the reduced
representations. As example, the Gell-Mann-Okubo mass formula can be derived using this
ansatz [1]. In many situations, the labels obtained from the reduction (1) are sufficient to solve
the problem, e.g., of we require multiplicity free reductions, as used in SU(N) tumbling gauge
models [2] or the interacting boson model [3]. However, often the subgroup does not provide
a sufficient number of labels to specify the basis states unambigously, due to multiplicities
greater than one for induced representations. This turns out to be the rule for non-canonical
embeddings and generic representations of g. For some special types, like totally symmetric or
anti-symmetric representations, additional labels are not necessary to solve the problem, and
the degeneracies can be solved directly with the available operators.

Many procedures methods have been developed to solve the so-called missing label problem
(short MLP), from specific construction of states for the reduction chain to the formal
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construction of all possible labelling operators using enveloping algebras [4]. The latter procedure
allows in theory to find the most general labelling operator, although the effective computation of
admissible operators is rather cumbersome. In addition, there is no general criterion to compute
the number of operators necessary to generate integrity bases in enveloping algebras.

In the mid seventies, Peccia and Sharp [5] considered an analytic approach to the MLP
based on the method used to compute the generalized Casimir invariants of Lie algebras in the
commutative frame. This method is very close to the interpretation of Casimir operators as
functions that are constant on co-adjoint orbits, and consists essentially on a restriction of this
problem. The labelling operators are interpreted as solutions of a certain subsystem of partial
differential equations corresponding to the embedded subalgebra. Subgroup scalars are therefore
the differential invariants of the subalgebra in a specific realization, and their symmetrization
serves to separate multiplicities of reduced representations. Although this approach is, in
principle, computationally easier than the pure algebraic approach using operators in the
enveloping algebra, the integration of such differential equations is far from being trivial.
Moreover, the orthogonality conditions required to the labelling operators, in order to avoid
undesirable interactions, must be solved by pure algebraic methods in most cases.

Most of the MLP considered in the literature have been solved or studied from an algebraic
or analytic point of view, generally looking for solutions of lowest degrees. In appearance, no
attention has been paid to the properties that the embedding imply.1 The embedding s ⊃ s′

is conditioned by physical reasons, that is, the choice of the embedding class corresponds to
some specific coupling scheme or some relevant internal property that must be emphasized
(like angular momentum). Since the embedding determines the branching rules for irreducible
representations, it should be expected that labelling operators needed to solve multiplicities
are, in some manner, codified by the properties of the symmetry breaking determined by the
reduction chain.
When dealing with the MLP algebraically or analytically, it is not immediately clear to which
extent we are using the properties of this embedding or the branching rules. Moreover, we can
ask whether the obtained labelling operators have some intrinsic or physical meaning at all.
Formulated in another way: are the labelling operators of the MLP completely determined by
the reduction s ⊃ s′ (and therefore, by the underlying physics), or are they the result of a formal
algebraic/analytic manipulation?

In [7], the missing label problem was approached from a quite general point of view, but
having in mind the important fact observed in [8] that symmetry breaking and contractions of
Lie algebras have many points in common. This actually is deeply related to the characterization
of inhomogeneous algebras obtained from contractions of semisimple algebras [9]. Therefore, any
reduction chain s ⊃ s′ naturally induces a contraction of Lie algebras. It is therefore natural to
ask if the operators provided by the contraction g (the so-called contracted Casimir operators)
can be used to solve the MLP completely. The idea, in a different form, had been used previously
for angular momentum subalgebra, and can be seen clearly in the so-called rotor expansion
method [4].

The main goal of the general contraction ansatz in labelling problems can be resumed in the
following points:

(i) Find a procedure to solve the MLP using explicitly the properties of the embedding s ⊃ s′

[breaking symmetry ↔ contractions], that is, without invoking formal operators.

1 As known, non-equivalent embeddings lead to different branching rules, and therefore to different classification
schemes. This is the difference between the Wigner supermultiplet (nuclear LS coupling) and the strange-spin
multiplet structure of su(4) [6].
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(ii) Justify a natural choice of labelling operators as “broken Casimir operators”.
(iii) Find a phenomenological explanation for the non-integer expectation values of labelling

operators.

In this first development, only the contracted invariants were used to generate labelling
operators. This approach was however sufficient to solve many physically relevant missing label
problems, and the result were in perfect harmony with those obtained using other techniques.
It was also observed that the method can fail to find a sufficient number of missing operators
whenever the identity N (g) = N (s) = n is satisfied. The failure is essentially a consequence of
an insufficient number of invariants in the contraction.

The aim of this work is to further develop the contraction procedure, but using not only
the contracted invariants, but a certain decomposition induced in the Casimir operators of
the contracted algebra, which turn out to be subgroup scalars but no more invariants of the
contraction. With this decomposition, we are able to surmount the difficulty for cases with
insufficient number of contracted operators. A more interesting consequence of this fact is the
possibility of explaining the existence of missing label operators of the same degree, as they have
already been constructed in the algebraic frame.

2. Classical Casimir operators
Given a presentation s =

{
X1, .., Xn | [Xi, Xj ] = CkijXk

}
of a Lie algebra s in terms of generators

and commutation relations, we are interested in (polynomial) operators Cp = αi1..ipXi1 ..Xip in
the generators of s such that the constraint [Xi, Cp] = 0, (i = 1..n) is satisfied. Such an operator
necessarily lies in the centre of the enveloping algebra of s, and is traditionally referred to as
Casimir operator. However, in many dynamical problems, the relevant invariant functions are
not polynomials, but rational or even trascendental functions (e.g. the inhomogeneous Weyl
group). Therefore the approach with the universal enveloping algebra has to be generalized in
order to cover arbitrary Lie groups. The most widely used method is the analytical realization.
The generators of the Lie algebra s are realized by the differential operators X̂i = Ckijxk

∂
∂xj

,
where the xi are commuting variables associated to each generator Xi. In this approach, a
function F ∈ C∞(s′) is an invariant of s if and only if it satisfies the system of PDEs

X̂i(F ) = 0, i = 1..n. (2)

Using the symmetrization map Sym(xa1
1 ..x

ap
p ) = 1

k!

∑
σ∈Sp x

a1

σ(1)...x
ap
σ(p), we recover the Casimir

operator for polynomial solutions. With this analytical ansatz, it is easily seen that the number
of independent solutions is

N (s) = dim s− rank
[
Ckijxk

]
. (3)

As already commented, one of the main applications of Casimir operators of Lie algebras is the
labelling of irreducible representations. In a more general approach, irreducible representations
of a Lie algebra g can be labelled using the eigenvalues of its generalized Casimir invariants [5].
For each representation, the number of internal labels needed is given by

i =
1
2

(dim g−N (g)). (4)

For the special case of semisimple Lie algebras, this number is deeply related to the number of
positive roots of its complexification. If we use some subalgebra g ⊃ h to label the basis states
of g, the embedding provides 1

2(dim h +N (h)) + l′ labels, where l′ is the number of invariants of
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g that depend only on variables of the subalgebra h [5]. In general, this is still not sufficient to
separate multiplicities of induced representations, so that we need to find

n =
1
2

(dim g−N (g)− dim h−N (h)) + l′ (5)

additional operators, which are commonly called missing label operators. The total number of
available operators of this kind is twice the number of needed labels, m = 2n. For the case n > 1,
it remains the problem of determining a set of n mutually commuting operators, as commented
before. These operators can be seen to be subgroup scalars, so that the analytical approach
is a practical method to find the labelling operators.2 Considering the realization of s ⊃ s′

by differential operators indicated in (2), we restrict to the PDEs corresponding to subgroup
generators

X̂i = Ckijxk
∂

∂xj
, 1 ≤ i ≤ dim s′. (6)

Solutions to this system f(s′) reproduce the differential invariants in dim s dimensions. The
total number of solutions of the latter system is given by:

N (f(s′)) = m+N (s) +N (s′)− l′. (7)

We observe that (7) refers to the number of functionally independent solutions. Integrity bases,
constrained by the coarser algebraic independence, will generally have much more elements
than (7), and no general procedure is known to compute its dimension. In addition, to be
useful as labelling operators, two (symmetrized) solutions F1, F2 of system (6) must satisfy the
orthogonality condition [F1, F2] = 0 and commute with the Casimir operators Ci and Dj of s
and the subalgebra s′. Therefore the set of commuting operators {Ci, Dj , Fk} serves to label the
states unambiguously.

It was proved in [7] that any reduction chain s ⊃ s′ is naturally associated to an Inönü-
Wigner contraction s g = s′−→⊕R (dim s− dim s′)L1, where the representation R of s′ satisfies
the constraint3

ads = ads′ ⊕R. (8)

The contraction is easily seen to be defined by the non-singular transformations

Φt (Xi) =
{

Xi, 1 ≤ i ≤ s
1
tXi, s+ 1 ≤ i ≤ n , (9)

where {X1, .., Xs, Xs+1, .., Xn} is a basis of s such that {X1, .., Xs} generates the subalgebra
s′ and {Xs+1, .., Xn} spans the representation space R. If both s and s′ are semisimple,
the contraction is isomorphic to an inhomogeneous Lie algebra with Levi decomposition
g = s′−→⊕R (dim s− dim s′)L1. Since it satisfies the condition [g, g] = g, this algebra admits
a fundamental basis of invariants consisting of Casimir operators. Moreover, by the contraction
we have the inequality N (s) ≤ N (g). The system of PDEs corresponding to this contraction
can be divided into two parts:

X̂iF = Ckijxk
∂F

∂xj
= 0, 1 ≤ i ≤ s, (10)

X̂s+iF = Cs+ks+i,jxs+k
∂F

∂xj
= 0, 1 ≤ i, k ≤ n− s, 1 ≤ j ≤ s. (11)

2 In many cases, the degeneracies of the reduction chain can be solved without using the subgroup scalars, or are
determined by a specifical ansatz adapted to the involved groups.
3 Actually, the branching rule depends on a numerical index jf that characterizes the embedding class.
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The subsystem (10) corresponds to the generators of s′ realized as subalgebra of s, while the
remaining equations (11) describe the representation. Written in matrix form, the system is
given by 

0 ... Ck1sxk Ck1,s+1xk ... Ck1,nxk
...

...
...

...
−Ck1sxk ... 0 Cks,s+1xk ... Cks,nxk
−Cks,s+1xk ... −Cks,s+1xk 0 ... 0

...
...

...
...

−Ck1nxk ... −Cks,nxk 0 ... 0





∂x1F
...

∂xsF
∂xs+1F

...
∂xnF


= 0.

Since the first s first rows reproduce exactly the system of PDEs needed to compute the missing
label operators, we conclude that any invariant of g is a candidate for missing label operator.
In view of this situation, the following questions arise naturally:

(i) Do polynomial functions of the invariants of these algebras suffice to determine n mutually
orthogonal missing label operators?

(ii) Can all available operators found by this procedure?

The answer to the first equation is in the affirmative for those cases where the contraction
provides a number of independent invariants exceeding the number of needed labelling operators.
It fails when these two quantities coincide, which suggests that the procedure has to be refined.
The answer to the second question is generally in the negative (see e.g. the algebras with one
missing label), although it cannot be excluded that with the refinement proposed in this work we
are able to recover a complete set of independent labelling operators for some special reductions.
In most cases, only half of the available operators should be expected, since all operators obtained
are the result, in some sense, of “breaking” the original Casimir operators. Whether a further
refinement allows to obtain additional labelling operators that are independent remains for the
moment an unanswered question.

3. Decomposition of Casimir operators
In this section we prove that the contraction induced by the reduction chain induces a
decomposition of the corresponding Casimir operators of s, which allow, among other properties,
to determine the invariants of the contraction g. However, other terms are also relevant for the
missing label problem, and constitute the solution to the problem pointed out in [7] when the
number of invariants of the contraction is not sufficient. These additional terms do not constitute
invariants of the contraction, and where therefore not considered in [7].

We briefly recall the definition of contracted invariants. Since classical Inönü-Wigner
contractions are the only type of contractions needed for the labelling problem, we can restrict
ourselves to this case [10]. Let Cp(X1, ..., Xn) = αi1...ipXi1 ...Xip be a pth-order Casimir operator
of s. Then the transformed invariant takes the form

F (Φt(X1), ..,Φt(Xn)) = tni1+...+nipαi1...ipXi1 ...Xip , (12)

where nij = 0, 1. Taking the maximal power in t,

M = max
{
ni1 + ...+ nip | αi1..ip 6= 0

}
, (13)

the limit

F ′(X1, .., Xn) = lim
t→∞

t−MF (Φt(X1), ...,Φt(Xn))

=
∑

ni1+...+nip=M

αi1...ipXi1 ...Xip
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provides a Casimir operator of degree p of the contraction g′. Now, instead of extracting only
the term with the highest power of t, we consider the whole decomposition

Cp = tMC ′p +
∑
α

tαΦα + Φ0, (14)

where α < M ≤ p and Φ0 is a function of the Casimir operators of the subalgebra s′ (these
generators have not been re-scaled). It is straightforward to verify that C ′p is not only an
invariant of the contraction g, but also a solution to the MLP.4 This first term was central to
the argumentation in [7], and allowed to obtain commuting sets of labelling operators. However,
the remaining terms can also be individually considered as candidates for labelling operators,
as states the following

Proposition 1 The functions Φα are solutions of the missing label problem, that is, they satisfy
the system

X̂iΦα = Ckijxk
∂Φα

∂xj
= 0, 1 ≤ i ≤ s. (15)

Proof. First of all, the decomposition (14) tells that the Casimir operator Cp can be rewritten
as a sum of homogeneous polynomials C ′p,Φα with the property that C ′p is of homogeneity
degree p −M in the variables {x1, .., xs} associated to subalgebra generators and degree M in
the remaining variables {xs+1, .., xn}. Accordingly, any Φα is of degree p − α in the variables
{x1, .., xs} and α in the {xs+1, .., xn}. We denote this by saying that these functions are of
bi-degree (p− α, α).

Now the equations (10) corresponding to subalgebra generators remain unaltered by the
contraction procedure, since the re-scaling of generators does not affect them.5 Thus for any
1 ≤ i ≤ s and any homogeneous polynomial Ψ of bi-degree (p− q, q) we obtain

X̂iΨ = Ckijxk
∂Ψ
∂xj

+ Ck+sij+sxk+s
∂Ψ
∂xj

, (16)

and the result is easily seen to be again a polynomial with the same bi-degree. This means that
evaluating Cp = tMC ′p +

∑
α t

αΦα + Φ0 is a sum of polynomials of different bi-degree, and since
Cp is a Casimir operators, the only possibility is that each term is a solution of the system. We
thus conclude that the Φα are solutions of (10).

The first question that arises from decomposition (14) is how many independent additional
solutions we obtain. Since all Φα together sum the Casimir operator, some dependence relations
must exist.

Lemma 1 Let Cp be a Casimir operator of s of order p. Suppose that

Cp = Φ(p−α1,α1) + ...+ Φ(p−αq ,αq), 0 ≤ αi < αi+1 ≤ p (17)

is the decomposition of Cp into homogeneous polynomials of bi-degree (p, q).

(i) If Φ(0,p) 6= 0, then at most q− 2 polynomials Φ(p−αj ,αj) are functionally independent on the
Casimir operators of s and s′.

4 For t = 1, equation (14) shows how the Casimir operator decomposes into homogeneous polynomials in the
variables of the subalgebra and the complementary space over the original basis.
5 On the contrary, for the remaining equations the differential operators of the generators corresponding to the
representation have been modified, and the equations are dependent on t.
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(ii) If Φ(0,p) = 0, then at most q− 1 polynomials Φ(p−αj ,αj) are functionally independent on the
Casimir operators of s and s′.

The proof follows at once observing that Φ(0,p) is a function of the Casimir operators of
the subalgebra s′. The independence on the Casimir operators of s′ does not imply in general
that the Φ(p−α,α) obtained are all functionally independent between themselves. The number
of independent terms depends also on the representation R induced by the reduction [11]. In
any case, however, at least one independent term is obtained for any Casimir operator of degree
at least three. For the special case of n = 1 labelling operator, two terms independent on the
Casimir operators were found, which allowed to select one as the labelling operator [7]. Once a
set of functionally independent solutions to system (10) has been chosen (including the Casimir
operators), the first part of the labelling problem is solved. Now, if we want to obtain a set of
commuting operators, we have to look for all commutators among the symmetrized operators
Φ(p−αj ,αj). We denote by Φsymm

(p−αj ,αj) the symmetrized polynomial. Then
[
Φsymm

(p−αj ,αj),Φ
symm
(q−αk,αk)

]
is a homogeneous polynomial of degree p+ q − 1, and also constitutes a missing label operator.
Actually this brackets is expressible as sum of polynomials of different bi-degree, and these terms
constitute themselves labelling operators [12]. A procedure to solve the missing label problem
can thus be resumed in the following steps:

• Decompose the Casimir operators of s of degree p ≥ 3 with respect to the associated
contraction.
• Determine the commutator of all symmetrized polynomials Φsymm

(p−αj ,αj) with αj 6= 0.

• From those commuting operators, extract n operators that are functionally independent
from the Casimir operators of s and the subalgebra s′.

In general, the second step is reduced to pure computation. There is no simple procedure
to determine whether two missing label operators are mutually orthogonal, although various
symbolic routines have been developed to compute these brackets (see e.g. [13]). In some
special circumstances, however, the decomposition (14) can provide orthogonality without being
forced to compute the brackets. If for a specific MLP it is known that no solutions of bi-degree
(r, s) exists for some fixed r + s = p + q, and if we have two labelling operators such that[
Φsymm

(p−αj ,αj),Φ
symm
(q−αk,αk)

]
is a sum of polynomials of bi-degree (s, r), then the commutation follows

at once. This idea was first explored systematically in [12]. We remark that in the commutative
frame, it would suffice to show that no polynomial function of bi-degree (r, s) is a solution to
subsystem (10).6

4. Examples
In this section we show how the decomposition of Casimir operators of higher order provide
solutions to missing label problem that could not be solved completely by only using the
contraction, or for which no proposed set of labelling operators has been computed yet. We
insist on the fact that the main difficulty in the formal approach to the MLP resides in obtaining
a sufficient number of (functionally) independent labelling operators, from which a commuting
set can be extracted.

4.1. G2 ⊃ su(2)× su(2)
This chain was indicated in [7] to give an insufficient number of labelling operators when only the
contraction invariants are considered. Actually, in this case we have n = 1

2 (14− 2− 6− 2) = 2
labelling operators, and the inhomogeneous contraction G2  (su(2)× su(2))−→⊕R8L1 preserves

6 The labelling operator in the enveloping algebra of s follows as the symmetrized form of such functions.
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the number of invariants. This means that we would only obtain one additional operator, since
the (contracted) operator of order two is of no use. Now, the method failed because it did not
take into account the decomposition of the sixth order operator into homogeneous polynomials
of bi-degree (p, q) in the variables. We show that, with this decomposition, we obtain a complete
solution to the MLP related to the chain G2 ⊃ su(2) × su(2). To this extent, we choose the
same tensor basis used in [14] consisting of the generators {j0, j±, k0, k±, Rµ,ν} with µ = ±3

2 ,±
1
2 ,

ν = ±1
2 . The generators Rµ,ν are related to an irreducible tensor representation R of su(2)×su(2)

of order eight. In this case, the contraction G2  (su(2)× su(2))−→⊕R8L1 is obtained considering
the transformations:

j′0 = j0, j
′
± = j±, k

′
0 = k0, k

′
± = k±, R

′
µ,ν =

1
t
Rµ,ν .

If we decompose now the Casimir operators C2 and C6 over the transformed basis, we obtain
the following decomposition

C2 = t2C(2,0) + C(0,2),
C6 = t6C(6,0) + t4C(4,2) + t2C(2,4) + C(0,6),

(18)

where C(0,2), C(0,6) are functions of the Casimir operators of su(2) × su(2). Since C(2,0) is
functionally dependent on the invariants of G2 and su(2)× su(2), it is not further useful. Now
it can be verified that

∂
(
C2, C6, C21, C22, C(2,4), C(4,2)

)
∂
(
k0, k−, j0, j+, R 3

2
, 1
2
, R− 3

2
, 1
2

) 6= 0, (19)

where C21 and C22 are the quadratic Casimir operators of su(2)× su(2). This provides us with
six independent operators. A long and tedious computation, due to the quite high number of
terms before and after symmetrization, shows moreover that the chosen operators commute:[

Ci, C(2,4)

]
=
[
Ci, C(4,2)

]
= 0, i = 2, 6[

C(4,2), C(2,4)

]
= 0. (20)

Therefore the set
{
C2, C6, C21, C22, C(2,4), C(4,2)

}
can be taken to solve the labelling problem.

It should be remarked that a direct comparison with the operators obtained in [14] is quite
difficult, for various reasons. At first, there the scalars in the enveloping algebra were considered,
not symmetrizations of functions, which implies that lower order terms where considered when
explicitly indicating the labelling operators. On the other hand, we have only distinguished the
bi-degree, that is, the degree of the polynomials in the variables of the su(2)× su(2) subalgebra
and the tensor representation R, while in [14] the order with respect to any of the copies of su(2)
was considered, resulting in operators labelled with three indices. Therefore the operators C(p,q)
considered here correspond to the sum of several scalars there. In addition, our solution contains
the term C(114) excluded in [14],7 confirming that the pair of commuting operators obtained
above is different from that found previously. We also remark that a further distinction of the
degrees of the polynomials Φsymm

(a,b) in the variables of the su(2) copies is not possible due to the
contraction.

4.2. The chain sp(6) > su(3)× u(1)
The unitary reduction of the symplectic Lie algebra of rank three has found ample applications
in the nuclear collective model [15]. In this case, nuclear states are classified by means of

7 This is a scalar having degree one in each of the copies of su(2) and four in the Rµ,ν generators.
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irreducible representations of sp(6) reduced with respect to the unitary subalgebra su(3)× u(1).
Since the induced representations are not multiplicity free, we have to add n = 3 labelling
operators to distinguish the states. Generating functions for this chain were studied in [16], but
without obtaining explicitly the three required operators. In this section, we will determine a
commuting set of labelling operators that solves the MLP for this reduction. As we shall see,
this case cannot be solved using only the invariants of the associated contraction.

We will use the Racah realization for the symplectic Lie algebra sp (6,R). We consider the
generators Xi,j with −3 ≤ i, j ≤ 3 satisfying the condition

Xi,j + εiεjX−j,−i = 0, (21)

where εi = sgn (i). Over this basis, the brackets are given by

[Xi,j , Xk,l] = δjkXil − δilXkj + εiεjδj,−lXk,−i − εiεjδi,−kX−j,l, (22)

where −3 ≤ i, j, k, l ≤ 3. The three Casimir operators C2, C4, C6 of sp (6,R) are easily obtained
as the coefficients of the characteristic polynomial

|A− T Id6| = T 6 + C2T
4 + C4T

2 + C6, (23)

where

A =


x1,1 x2,1 x3,1 −Ix−1,1 −Ix−1,2 −Ix−1,3

x1,2 x2,2 x3,2 −Ix−1,2 −Ix−2,2 −Ix−2,3

x1,3 x2,3 x3,3 −Ix−1,3 −Ix−2,3 −Ix−3,3

Ix1,−1 Ix1,−2 Ix1,−3 −x1,1 −x1,2 −x1,3

Ix1,−2 Ix2,−2 Ix2,−3 −x2,1 −x2,2 −x2,3

Ix1,−3 Ix2,−3 Ix3,−3 −x3,1 −x2,3 −x3,3

 . (24)

The symmetrized operators give the usual polynomials in the enveloping algebra. Since the
unitary algebra u(3) is generated by {Xi,j |1 ≤ i, j ≤ 3}, in order to write sp (6,R) in a su(3)×u(1)
basis, it suffices to replace the diagonal operators Xi,i by suitable linear combinations. Taking
H1 = X1,1−X2,2, H2 = X2,2−X3,3 and H3 = X1,1+X2,2+X3,3 we obtain the Cartan subalgebra
of su(3), while H3 commutes with all Xi,j with positive indices i, j. The invariants over this new
basis are simply obtained replacing the xi,i by the corresponding linear combinations of hi. The
contraction sp(6)  (su(3) × u(1))−→⊕R12L1, where R is the complementary to (ad(su(3) ⊗ (1))
in the adjoint representation of sp(6):8

adsp(6) = (adsu(3)⊗ (1))⊕R.

The contraction is determined by the transformations

H ′i = Hi, X
′
i,j = Xi,j , X

′
−i,j =

1
t
X−i,j , X

′
i,−j =

1
t
Xi,−j , 1 ≤ i, j ≤ 3. (25)

The contraction (su(3) × u(1))−→⊕R12L1 satisfies N = 3, thus has 3 Casimir operators that can
be obtained as contraction of C2, C4, C6. Note however that n = 3, thus the invariants of the
contraction will provide at most two independent missing label operators. This means that using
only the contraction, we cannot solve the MLP for this chain. In order to find a third labelling

8 More precisely, R decomposes into a sextet and antisextet with u(1) weight ±1 and a singlet with u(1) weight
1.
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operator, we have to consider the decomposition of the fourth and sixth order Casimir operators
of sp(6). Over the preceding transformed basis we obtain:

C4 = t4C(4,0) + t2C(2,2) + C(0,4),
C6 = t6C(6,0) + t4C(4,2) + t2C(2,4) + C(0,6),

(26)

where C(k,l) denotes a homogeneous polynomial of k in the variables of R and degree l in
the variables of the unitary subalgebra. The C(0,k) are functions of the Casimir operators
of su(3) × u(1), and therefore provide no labelling operators. We remark that, before
symmetrization, C(2,2) has 126 terms, C(2,4) 686 terms, and C(4,2) 444 terms. The symmetrized
operators C(2,2), C(4,2) and C(2,4) can be added to the Casimir operators of sp(6) and the
subalgebra su(3)× u(1), and the 9 operators can be seen to be (functionally) independent.[

Ci, C(2,2)

]
=
[
Ci, C(4,2)

]
=
[
Ci, C(2,4)

]
= 0, i = 2, 4, 6.[

C(2,2), C(4,2)

]
=
[
C(2,2), C(2,4)

]
=
[
C(2,4), C(4,2)

]
= 0. (27)

4.3. Applications to the conformal algebra
Among the many important problems in Physics where the conformal group SO(2, 4) plays an
impotant role, like the dynamical non-invariance group of hydrogen-like atoms, the application
to the periodic charts of neutral atoms in ions was first considered in [17]. This direction was
followed to classify chemical elements by various authors [18]. More recently, the conformal
group and its invariants are in the centre of the more ambitious program KGR, in order to
obtain quantitative predictions of the periodic table of elements [19, 20]. To this extent, the
set formed by the three Cartan generators and the Casimir operators (of degrees 2, 3 and 4),
which commute between themselves, can be used to label certain physical properties. However,
as noted by Racah [21], this set is still not sufficient for classification purposes. We have to
add three additional operators9 to obtain a complete set of commuting operators that solve
labelling problems. This follows at once if we consider the missing label problem for the Cartan
subalgebra. In this case

n =
1
2

(15− 3− 3− 3) = 3.

Therefore the Racah operators can be identified with labelling operators for the reduction chain
determined by the Cartan subalgebra. To exemplify the procedure, we compute the Racah
operators for the conformal algebra. We use the fact that it is isomorphic to the Lie algebra
su(2, 2). We start from the the u(2, 2)-basis formed by the operators {Eµν , Fµν}1≤µ,ν≤p+q=n
with the constraints

Eµν + Eνµ = 0, Fµν − Fνµ = 0,
gµµ = ((1, 1,−1,−1) .

The brackets are then given by

[Eµν , Eλσ] = gµλEνσ + gµσEλν − gνλEµσ − gνσEλµ (28)
[Eµν , Fλσ] = gµλFνσ + gµσFλν − gνλFµσ − gνσFλµ (29)
[Fµν , Fλσ] = gµλEνσ + gνλEµσ − gνσEλµ − gµσEλν (30)

To recover the conformal algebra, we take the Cartan subalgebra spanned by the vectors
Hµ = gµ+1,µ+1Fµµ − gµµFµ+1,µ+1 for µ = 1..3. The centre of u(p, q) is obviously generated
by gµµFµµ.

9 If r denotes the dimension of a semisimple Lie algebra s and l its rank, the number f = 1
2

(r − 3l) = 3 is usually
referred to as the Racah number.
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Proposition 2 A maximal set of independent Casimir invariants of su (2, 2) is given by the
coefficients Ck of the characteristic polynomial |IA− λIdN | = λ4 +

∑4
k=2Dkλ

4−k, where

A =


−I(3

4h1 − 1
2h2 + 1

4h3) −e12 − If12 e13 + If13 e14 + If14

e12 − If12 I(1
4h1 + 1

2h2 − 1
4h3) e23 + If23 e24 + If24

e13 − If13 e23 − If23 I(1
4h1 − 1

2h2 − 1
4h3) e34 + If34

e14 − If14 e24 − If24 −e34 + If34 I(1
4h1 − 1

2h2 + 3
4h3)

 .

(31)

The classical Casimir operators are obtained symmetrizing the functions Ck. In order to
compute the Racah operators, we consider the MLP for the chain h ⊂ su(2, 2), where h
denotes the Cartan subalgebra. The corresponding contraction10 is defined by the non-singular
transformations

H ′i =
1
t
Hi, i = 1, 2, 3.

According to this contraction, the Casimir operators decompose as follows:

C2 = t2C(2,0) + C(0,2),
C3 = t3C(3,0) + t2C(2,1) + C(0,3),
C4 = t4C(4,0) + t3C(3,1) + t2C(2,2) + C(0,4),

(32)

where the C(0,i) are functions of h1, h2, h3. The functions Iij are all solutions to the MLP. In
order to complete the set of orthogonal operators {H1, H2, H3, C2, C3, C4} with three mutually
commuting labelling operators, we first extract those triples that are functionally independent
from the Casimir operators of su(2, 2) and the hi. We can take for example C(3,0), C(4,0), C(3,1).
Since

∂
(
H1, H2, H3, C2, C3, C4, C(3,0), C(4,0), C(3,1)

)
∂(h1, h2, h3, e12, e13, e14, f23, f24, f34)

6= 0, (33)

these operators are independent. A somewhat more laborious computation shows that the
symmetrized forms of C(2,1), C(4,0), C(3,1) satisfy the commutators[

Ci, C(3,0)

]
=
[
Ci, C(4,0)

]
=
[
Ci, C(3,1)

]
= 0, i = 1, 2, 3.[

C(3,0), C(4,0)

]
=
[
C(3,0), C(3,1)

]
=
[
C(4,0), C(3,1)

]
= 0. (34)

Since the C(i,j) are solutions to the MLP, they commute with any function of the generators
Hi. In contrast to the previous cases, the length of the labelling operators never exceeds 70
terms before symmetrization. In conclusion, the set

{
H1, H2, H3, C2, C3, C4, C(3,0), C(4,0), C(3,1)

}
is complete formed by commuting operators. We observe that linear combinations of the
three Racah operators are of potential use to describe chemical and physical properties like
ionization energy, atomic volume or magnetic properties. Since this identification relies heavily
on experimental data [18], it remains to compute the corresponding eigenvalues for irreducible
representations (IRREPs) of su(2, 2), which constitutes a quite hard numerical problem. This
task is in progress.

5. Conclusions
The method of contraction is useful to solve the MLP when the number of invariants of the
contraction associated to the reduction chain s ⊃ s′ exceeds the number of needed labelling
operators. In the case where the invariants of the inhomogeneous contraction do not suffice to

10 In this case, the contraction is no more an inhomogeneous Lie algebra. The procedure remains however valid,
which suggests that it could also be valid for non-semisimple algebras.
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find a complete solution of the missing label problem, it is expectable that labelling operators
of the same degree appear. This suggests that further terms of the Casimir operators of s that
disappear during the contraction can be useful to complete the set of missing label operators.
We have shown that the contraction induces a decomposition of the Casimir operators, the
terms of which are all solutions to the MLP. From these terms a set of n independent labelling
operators can be extracted, reducing the problem to determine which combinations are mutually
orthogonal. In this sense, the method proposed in [7] is a first approximation to solve the MLP
using the properties of reduction chains, which however turns out to be useful in most practical
cases. The bi-degree of the Casimir operators of a Lie algebra with respect to the variables
associated to the generators of a subalgebra are therefore a relevant tool to obtain and classify
these labelling operators, although further distinction of terms, for example when the subalgebra
consists of various copies, is also convenient to deduce additional operators.11 This subdivision
cannot however be deduced from the contraction, since all generators of the subalgebra play the
same role.

Some important aspects of the decomposition method of Casimir operators based on the
contractions and its use in labelling problems are specially emphasized:

• The solutions provide a “natural” choice for the labelling operators. Their interpretation
as “broken” Casimir operators confers them a certain physical meaning, in contrast to
operators obtained by pure algebraic means, where the physical interpretation of the
operator is often not entirely clear.
• The decomposition provides also a consistent explanation to the question why a number of

reduction chains give labelling operators of the same degree. This fact is directly related to
an insufficient number of invariants in the contraction associated to the chain.
• This could probably explain why the eigenvalues of such labelling operators are not integers,

as already indicated by Racah [21]. It follows from the decomposition that the eigenvalues
of the labelling operators contribute to the eigenvalues of the Casimir operators. In this
context, the interpretation of a labelling operator as “broken” Casimir operator leads to
the idea of “broken” integer eigenvalues.

Some questions still remain open, namely, whether there exist reductions s ⊃ s′ for which
the method followed here provides all available labelling operators. An answer in this direction
implies to find the general solution to the MLP for each considered chain. Nowadays, only for a
few number of algebras these computations have been carried out completely [4, 22]. A complete
study of all physically relevant reduction chains involving simple Lie algebras up to some fixed
rank would certainly provide new insights to this problem. On the other hand, in can also not
be excluded that for reduction chains with a great number of labelling operators, the terms of
the decomposition are not sufficient to construct a set of independent labelling operators. To
which extent the invariants of the contraction not appearing as contracted operators play a role
must still be analyzed.12

Another problem, still in progress, is to obtain complete sets of commuting operators for all
simple Lie algebras, using the MLP determined by the Cartan subalgebra. The commented
application to the periodic charts of atoms in only one of the problems where this special type of
reductions have been shown to be of interest in developing algebraic models in molecular physics
or nuclear spectroscopy [23].

11 This turns out to be the case for the chain su(4) ⊃ su(2)× su(2) [4].
12 Such situations appear, e.g., considering a simple algebra of high rank and regular subalgebras of low rank.
If the induced representation (8) contains copies of the trivial representation, then the generators associated to
these will play the role of labelling operators. It happens moreover that these generators cannot be obtained
contracting the Casimir operators of s. This situation is however unlike to appear in some physically interesting
case.
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