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Abstract. The spin-statistics theorem in quantum field theory relates the spin of a particle
to the statistics obeyed by that particle. Here we investigate an interesting correspondence or
connection between curvature (κ = ±1) and quantum statistics (Fermi-Dirac and Bose-Einstein,
respectively). The interrelation between both concepts is established through vacuum coherent
configurations of zero modes in quantum field theory on the compact O(3) and noncompact
O(2, 1) (spatial) isometry subgroups of de Sitter and Anti de Sitter spaces, respectively. The
high frequency limit, is retrieved as a (zero curvature) group contraction to the Newton-Hooke
(harmonic oscillator) group. We also make some comments on the physical significance of the
vacuum energy density and the cosmological constant problem.

1. Introduction
Quantum vacua are not really empty. We know that zero-point energy, like other non-zero
vacuum expectation values, leads to observable consequences like, for instance, the Casimir
effect [1], and influences the behaviour of the Universe at cosmological scales, where the vacuum
(dark) energy is expected to contribute to the cosmological constant, which affects the expansion
of the universe.

In Quantum Field Theory, one expects the vacuum state to be stable under some underlying
symmetry group G (viz, the Poincaré group). Then the action of some spontaneously broken
symmetry transformations can destabilize the vacuum and make it to radiate. Such is the case
of the Planckian radiation of the Poincaré invariant vacuum under uniform accelerations, that
is, the Unruh effect [2]. Here, the Poincaré invariant vacuum looks the same to any inertial
observer but converts into a thermal bath of radiation with temperature

T = ~a/2πckB

in passing to a uniformly accelerated frame (a denotes the acceleration, c the speed of light
and kB the Boltzmann constant). These radiation phenomena are usually linked to some
kind of global mutilation of the spacetime (namely, existence of horizons). In the reference
[3], it was shown that the reason for this radiation is more profound and related to the
spontaneous breakdown of the conformal symmetry in quantum field theory. From this point
of view, a Poincaré invariant vacuum can be regarded as a coherent state of conformal zero
modes, which are undetectable (“dark”) by inertial observers but unstable under relativistic
uniform accelerations (special conformal transformations). There we used the conformal group
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in (1+1)-dimensions, SO(2, 2) ' SO(2, 1)×SO(2, 1), which consists of two copies of the pseudo-
orthogonal group SO(2, 1) (left- and right-moving modes, respectively). Here we study in general
the breakdown of a symmetry G in quantum field theory and apply to the particular cases of
O(3), O(2, 1) and Newton-Hooke groups (previously developed in [4]). We could think of O(3)
and O(2, 1) as isometry subgroups of the spatial part of de Sitter and Anti de Sitter spaces, with
positive and negative curvature κ, respectively.

The organization of the paper is as follows. In Sec. 3, we construct G = O(3), O(2, 1)
and Newton-Hooke invariant quantum field theories, in a unified manner. To be more precise,
we shall work with their double covers U(2) and U(1, 1) instead, for convenience. Then we
shall break the original symmetry G by choosing a pseudo-vacuum |θ〉, which turns out to be
a coherent state of zero modes, invariant under a subgroup G0 ⊂ G. We could think of zero
modes as “virtual” particles without “bright” energy (see later on Sec. 3) and undetectable byG0

observers. However, we shall show that a general symmetry transformation, which incorporates
the broken symmetry generators in G/G0, produces a “rearrangement” of the the G0-invariant
vacuum |θ〉 and makes it to radiate. In other words, we shall associate a thermal bath with the
excited (or, let us say, “polarized”) G0-vacuum and we shall show in Sections 4 and 5 that the
mean energy per mode matches the Bose-Einstein (BE) and Fermi-Dirac (FD) expressions, for
the non-compact U(1, 1) and compact U(2) isometry groups (κ = ∓1), respectively. The limit
of high frequencies (or large interlevel energy spacing ~ω � kBT ) is regained from a contraction
to the Newton-Hooke group (zero curvature, κ = 0), as explained in Sect. 6. The last Section
is devoted to some comments on the vacuum energy and its implications in cosmology.

Before, we describe in Sec. 2 the general construction of a G-invariant quantum field theory
as a second quantization on a group G and the spontaneous breakdown of G to G0, the stability
subgroup of the degenerated vacuum. We shall provide the essential ingredients to calculate
probability distributions and average energies of the ground state excitations.

2. The general context
Let G = {Xα, α = 0, 1, 2, . . . , l} be the (Lie) algebra of observables of a given quantum system,
among which we highlight X0 as the Hamiltonian operator. Let H be the (Hilbert) carrier space
of a unitary irreducible representation U of the Lie group G. Let us assume that the energy
spectrum is discrete and bounded from bellow, that is, there is a vacuum vector |0〉 whose energy
E0 we set to zero, i.e. X0|0〉 = 0. Let B(H) = {|n〉, n = 0, 1, 2, . . . } be a (finite or infinite)
orthonormal basis of H made up of energy eigenvectors, X0|n〉 = En|n〉.

An important ingredient to construct a G-invariant quantum field theory, as a second-
quantized (many-particle) theory, will be the irreducible matrix coefficients

Umn(x) ≡ 〈m|U(x)|n〉, (1)

of the representation U(x) = ei
∑

α xαXα of G in the orthonormal basis B(H), where {xα ∈
R, α = 0, . . . ,dim(G)− 1} stands for a coordinate system in G.

Given the Fourier expansion, in energy modes, of a field

|ψ〉 =
∑
n=0

an|n〉 , (2)

the Fourier coefficients an (resp. a†n) are promoted to annihilation (resp. creation) operators of
energy modes En in the second quantized theory, with commutation relations [an, a

†
m] = δn,m.

The (finite) action of G on annihilation operators is:

am → a′m =
∑
n=0

Umn(x)an, (3)
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together with the conjugated expression for creation operators. The infinitesimal generators of
this finite action are the second quantized version, X̂α, of the basic observables Xα. They have
the following explicit expression in terms of creation and annihilation operators:

X̂α = −i
∑

m,n=0

a†m
∂Umn(x)
∂xα

∣∣∣∣
x=0

an. (4)

For example, since |n〉 are energy En eigenstates and we have set E0 = 0, the Hamiltonian
operator is:

X̂0 =
∑
n=1

Ena
†
nan. (5)

The vacuum |0̂〉 of the second quantized theory is characterized by being stable under the
symmetry group G, i.e. it is annihilated by the symmetry generators

X̂α|0̂〉 = 0, α = 0, . . . ,dim(G)− 1 (6)

and also by an|0〉 = 0,∀n ≥ 0. Then an orthonormal basis for the Hilbert space of the second
quantized theory is constructed by taking the orbit through the vacuum |0̂〉 of the creation
operators a†n:

|q(n1), . . . , q(np)〉 ≡
(a†n1)q(n1) . . . (a†np)q(np)

(q(n1)! . . . q(np)!)1/2
|0̂〉, (7)

where q(n) ∈ N denotes the occupation number of the energy level n.
Note that any multi-particle state (7) made up of an arbitrary content of zero modes, like

|θ〉 ≡
∞∑

q=0

θq(a
†
0)

q|0̂〉, θq ∈ C, (8)

has zero total energy, i.e. X̂0|θ〉 = 0, since [X̂0, a0] = 0. It also verifies an|θ〉 = 0,∀n > 0. Let
us denote by G0 ⊂ G the maximal stability (isotropy) subgroup of this “degenerated vacuum”
|θ〉, of which the Hamiltonian X̂0 is one of its generators.

Actually, the operator a0 conmutes with the unbroken symmetry generators X̂(0)
α ∈ G0 and

the creation operators:
[a0, X̂

(0)
α ] = 0 = [a0, a

†
n], ∀n > 0, (9)

so that, by Shur lemma, a0 behaves as (a multiple of) the identity operator in the broken theory.
That is, it is natural to demand a0 to leave the G0-invariant vacuum (8) stable, which implies
that:

a0|θ〉 = θ|θ〉 ⇒ |θ〉 = eθa†0−θ̄a0 |0̂〉. (10)

Thus, the vacuum of our (spontaneously) broken theory will be a coherent state of zero modes
(see [5] and [6] for a thorough exposition on coherent states).

Now we show that a general unitary symmetry transformation (3), which incorporates broken
symmetry generators inG/G0, produces a “rearrangement” of this pseudo-vacuum |θ〉 and causes
it to radiate. In other words, we can associate a quantum statistical ensemble with the excited
(or, let us say, “polarized”) vacuum

|θ′〉 ≡ eθa′†0 −θ̄a′0 |0̂〉, (11)

where a′0 is given by (3).
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Indeed, one can compute the average number of particles with energy En inside |θ′〉 as the
expectation value:

Nn(x) = 〈θ′|a†nan|θ′〉 = |θ|2|U0n(x)|2, (12)

hence, |θ|2 is the total average of particles of this quantum statistical ensemble. In the same
way, the probability Pn(p, x) of observing p particles with energy En in |θ′〉 can be calculated
as:

Pn(q, x) = |〈q(n)|θ′〉|2 =
e−|θ|

2

q!
|θ|2q |U0n(x)|2q =

e−|θ|
2

q!
N q

n(x). (13)

Hence, the relative probability of observing a state with total energy E in the excited vacuum
|θ′〉 is:

P (E) =
∑

q0, . . . , qk :∑k
n=0Enqn = E

k∏
n=0

Pn(qn, x) . (14)

For the cases studied in this paper, this distribution function can be factorized as P (E) =
Ω(E)e−τE , where Ω(E) is a relative weight proportional to the number of states with energy E
and the factor e−τE fits this weight properly to a temperature T = kB/τ .

We shall be primarily interested in the mean values of the basic observables (4). They can
be calculated as:

Xα = 〈θ′|X̂α|θ′〉 = −i|θ|2
∑

m,n=0

U0m(x)
∂Umn(0)
∂xα

Ū0n(x)

= −i|θ|2
(
U(x)

∂U(0)
∂xα

U †(x)
)

00

. (15)

In particular, the mean energy is simply:

X0 = |θ|2
∑
n=1

|U0n(x)|2En. (16)

We shall see that X0 matches the usual FD and BE expressions for the compact G = U(2) and
non-compact G = U(1, 1) cases, respectively.

3. The case of Gκ = O(3), O(2, 1) and Newton-Hooke groups
The Lie algebra commutators of our basic symmetry group Gκ are:

[A+, A−] = 2κH − Ξ, [H,A±] = ±A±, [Ξ, all] = 0, (17)

where H represents the Hamiltonian, Ξ plays the role of the zero-point energy (or the total
number of particles operator in second quantization), A± are ladder creation and annihilation
operators and κ = ±1, 0 is the curvature parameter for U(2), U(1, 1) and the Newton-Hooke
(harmonic oscillator) groups, respectively.

The group U(1, 1) is noncompact so, unlike the case of U(2), all its unitary irreducible
representations (unirreps) are infinite-dimensional. This group has a number of series of unirreps:
principal, discrete and supplementary. We shall consider here only representations of the discrete
series where each carrier space Hs is labelled by the (conformal) spin s = 1/2, 1, 3/2, 2, . . . and is
spanned by the orthonormal basis B(Hs) = {|s, n〉, n = 0, 1, 2, . . . }. The action of the operators
(17) on this basis vectors is:

H|s, n〉 = n|s, n〉, A+|s, n〉 =
√

(n+ 1)(2s− κn)|s, n+ 1〉,
Ξ|s, n〉 = 2s|s, n〉, A−|s, n〉 =

√
n(2s− κ(n− 1))|s, n− 1〉.

(18)
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Looking at this representation, we can think of an “exotic” harmonic oscillator with an
equispaced energy spectrum En = εn, where we have introduced the interlevel energy spacing
ε = ~ω to give dimensions. For negative, κ = −1, and zero, κ = 0, curvature (i.e., for U(1, 1)
and the Newton-Hooke groups, respectively), this energy spectrum is unbounded from above,
whereas for positive curvature, κ = 1 (i.e., for U(2)), we have a bounded spectrum with 2s+ 1
states.

Using the standard Iwasawa decomposition (see e.g. [5]), any group element U ∈ Gκ can be
represented as:

U(ζ, ζ̄, τ, ϕ) = eζA+−ζ̄A−eiτHeiϕΞ, (19)

where ϕ, τ ∈ [0, 2π] and ζ ∈ C. An important ingredient to construct a Gκ invariant quantum
field theory, as a second quantization on Gκ, will be the irreducible matrix coefficients of the
representation (18) in the orthonormal basis B(Hs):

U (s)
mn(ζ, ζ̄, τ, ϕ) ≡ 〈s,m|U(ζ, ζ̄, τ, ϕ)|s, n〉. (20)

Given the Fourier expansion in modes of a field with (conformal) spin s,

|ψ〉 =
∑
n=0

an|s, n〉 , (21)

the Fourier coefficients an (resp. a†n) are promoted to annihilation (resp. creation) operators
of energy modes En = ~ωn in the second quantized theory, with commutation relations
[an, a

†
m] = δn,m. The second quantized version, Ĥ, Ξ̂, Â±, of the basic operators (17), given

by the general expression (4), now reads:

Ĥ =
∑

n na
†
nan, Â+ =

∑
n

√
(n+ 1)(2s− κn) a†nan+1,

Ξ̂ = 2s
∑

n a
†
nan, Â− =

∑
n

√
n(2s− κ(n− 1)) a†nan−1,

(22)

where summations start at n = 0 and are finite or infinite, depending on the curvature κ. Here
we highlight the total energy operator, Ê ≡ ~ωĤ, and the total number of particles operator,
N̂ ≡ 1

2s Ξ̂.
The vacuum |0̂〉 of the second quantized theory is characterized by being stable under the

basic isometry group Gκ, i.e.

U |0〉 = |0〉,∀U ∈ Gκ ⇒ {Ĥ, Ξ̂, Â+, Â−}|0〉 = 0, (23)

and annihilated by an|0〉 = 0,∀n ≥ 0. Then an orthonormal basis for the Hilbert space of the
second quantized theory is constructed as in (7). Note that any second quantized state (7) made
up of an arbitrary content of zero modes, like (8), has zero total energy, i.e. Ĥ|θ〉 = 0. It also
verifies Â−|θ〉 = 0 and an|θ〉 = 0,∀n > 0, so that the state (8) behaves as a (degenerated) vacuum
under the (unbroken) subgroup B ⊂ Gκ of affine or similitude transformations, generated by
B = {Ĥ, Â−}. Moreover, given that a0 acts as (a multiple of) the identity operator in the broken
theory, that is, it commutes with:

[a0, Ĥ] = [a0, Â−] = [a0, a
†
n] = 0,∀n > 0, (24)

it is natural to demand a0 to leave the affine vacuum (8) stable, which implies again (10).
Thus, the vacuum of our (spontaneously) broken theory will be a coherent state of zero modes.
The squared modulus of the complex parameter θ has the physical significance of the vacuum
expectation value of the number operator in the new vacuum; indeed, one can verify that:

〈θ|N̂ |θ〉 = |θ|2. (25)
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As stated in the Introduction, we can think of zero modes as virtual particles without (“bright”)
energy E, undetectable (“dark”) by affine observers. However, we shall show that a general
unitary symmetry transformation (20), which incorporates the broken symmetry generator Â+,
produces a “rearrangement” of the the affine vacuum |θ〉 and makes it to radiate. In other
words, we shall associate a thermal bath with the excited (or, let us say, “polarized”) vacuum
(11) and we shall show in Sections 4 and 5 that the mean energy per mode, 〈θ′|Ê|θ′〉, matches
the usual BE and FD expressions, for the non-compact U(1, 1) and compact U(2) isometry
groups (κ = ∓1), respectively. The limit of high frequencies (or large interlevel energy spacing
~ω � kBT ) is regained from a contraction to the Newton-Hooke group (zero curvature, κ = 0),
as explained in Sect. 6. Note however that the average number of particles is conserved under
this (unitary) transformation, i.e. 〈θ′|N̂ |θ′〉 = |θ|2, because U †U = 1. We shall relate this
quantity to a vacuum energy density, the sign of which depends on the curvature κ, and we shall
make some comments on the cosmological constant problem in Sect. 7.

4. Broken U(1, 1) symmetry: hyperbolic geometry and BE statistics
The irreducible matrix coefficients of the representation (18) in the orthonormal basis B(Hs)
are given in this case (κ = −1) by:

U (s)
mn(ζ, ζ̄, τ, ϕ) = e2siϕ(1− zz̄)s

√√√√C
(s)
m

C
(s)
n

m∑
q=max(0,m−n)

(
n

m−q

)(
2s+n+q−1

q

)
×(−1)n−m+qeinτzq z̄n−m+q, (26)

where C(s)
n = n!/(2s + n − 1)!, ζ = |ζ|eiφ and z ≡ eiφ tanh |ζ| is restricted to the unit disk

D = {z ∈ C : |z| < 1}, which is the stereographic projection of the upper sheet of the
hyperboloid H2 = {~v ∈ R3 : ~v2 = v2

0 − v2
1 − v2

2 = 1, v0 > 0} onto the complex plane. The
correspondence is established through:

~v = (cosh(2|ζ|), sinh(2|ζ|) cosφ, sinh(2|ζ|) sinφ).

The finite action (3) of U(1, 1) on annihilation (resp. creation) operators of zero modes is:

a0 → a′0 = e2siϕ(1 + zz̄)s
∞∑

n=0

(−1)n
(
2s+n−1

n

)1/2
einτ z̄nan, (27)

which leads to the excited vacuum:

|θ′〉 ≡ eθa′†0 −θ̄a′0 |0〉 = e−|θ|
2/2

∞∑
q=0

zq
∑

m1, ...,mq :∑q
n=1 nmn = q

q∏
n=0

Rmn
n

mn!

q∏
n=0

(a†n)mn |0〉 , (28)

where Rn ≡ θ(−1)ne−2siϕ−inτ (1−zz̄)s
(
2s+n−1

n

)1/2
and we set m0 ≡ 0. We have used the general

identity: ( ∞∑
n=0

γnz
n

)l

=
∞∑

q=0

δqz
q, δ0 = γl

0, δq =
1
qγ0

q∑
s=1

(sm− q + s)γsδq−s. (29)
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From (28), we see that the relative probability of observing a state with total energy Eq = ~ωq
in the excited vacuum |θ′〉 is:

Pq = Ω(Eq)(|z|2)q ,

Ω(Eq) ≡
∑

m1, ...,mq :∑q
n=1 nmn = q

q∏
n=0

|Rn|2mn

mn!
. (30)

We can associate a thermal bath with this distribution function by noticing that Ω(Eq) behaves
as a relative weight proportional to the number of states with energy Eq = ~ωq; the factor (|z|2)q

fits this weight properly to a temperature T as:

(|z|2)q = eq log |z|2 = e
− Eq

kBT , T ≡ − ~ω
kB log |z|2

. (31)

We could think of (conformal) U(1, 1) ' O(1, 2) transformations as transitions to a uniformly
relativistic accelerated frame (see e.g. [3]), so that T = ~a

2πckB
is the temperature associated with

a given acceleration a ≡ −2πωc/log |z|2.
After some intermediate calculations, the expected value of the total energy Ê in the

accelerated vacuum |θ′〉 proves to be:

〈θ′|Ê|θ′〉 = |θ|2(1− |z|2)2s
∞∑

n=0

~ωn
(
2s+n−1

n

)
|z|2n

= 2s|θ|2~ω |z|2

1− |z|2
= 2s|θ|2 ~ωe−~ω/kBT

1− e−~ω/kBT
, (32)

which is proportional to the mean energy per mode of the B-E statistics. InD spatial dimensions,
the number of states with frequency between ω and ω + dω is proportional to ωD−1. Thus, for
D = 3, the spectral distribution of the radiation of the accelerated vacuum |θ′〉 is Planckian, i.e.
|θ′〉 radiates as a black body.

Still, we could have introduced a chemical potential µ by setting |z|2 = e(µ−~ω)/kBT with the
restriction µ < ~ω, in order to preserve the condition |z| < 1.

5. Broken U(2) symmetry: spherical geometry and FD statistics
The irreducible matrix coefficients of the representation (18) in the orthonormal basis B(Hs)
are given in this case (κ = 1) by:

U (s)
mn(ζ, ζ̄, τ, ϕ) = e2siϕ(1 + zz̄)−s

√√√√C
(s)
m

C
(s)
n

min(m,2s−n)∑
q=max(0,m−n)

(
n

m−q

)(
2s−n

q

)
×(−1)n−m+qeinτzq z̄n−m+q, (33)

where C(s)
n =

(
2s
n

)−1
and z ≡ eiφ tan |ζ| is now related to the stereographic projection of the

two-dimensional sphere S2 = {~v ∈ R3 : ~v2 = v2
0 + v2

1 + v2
2 = 1} onto the complex plane, given by:

~v = (cos(2|ζ|), sin(2|ζ|) cosφ, sin(2|ζ|) sinφ).

The finite action of U(2) on annihilation (resp. creation) operators of zero modes is now:

a0 → a′0 = e2siϕ(1 + zz̄)−s
2s∑

n=0

(−1)n
(
2s
n

)1/2
einτ z̄nan, (34)
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which leads to the polarized vacuum |θ′〉 according to the formula (11). As for the hyperbolic
case, we can associate a thermal bath with the state |θ′〉. The difference now is that the factor
|z|2 is unbounded from above, i.e. |z|2 <∞, which means that we have to introduce a non-zero
chemical potential µ, such that |z|2 = e(µ−~ω)/kBT , or/and allow for negative temperatures.

The expected value of the total energy Ê in the polarized vacuum |θ′〉 proves to be:

〈θ′|Ê|θ′〉 = |θ|2(1 + |z|2)−2s
2s∑

n=0

~ωn
(
2s
n

)
|z|2n

= 2s|θ|2~ω |z|2

1 + |z|2
= 2s|θ|2 ~ω

1 + e(~ω−µ)/kBT
, (35)

which is proportional to the mean energy per mode of the FD statistics.

6. Flat geometry and the high frequency limit
Like in the previous two cases, one can compute the finite action of the Newton-Hooke group
G0 on annihilation (resp. creation) operators of zero modes:

a0 → a′0 = e2siϕe−2s|z|2/2
∞∑

n=0

(−1)neiτ
√

(2s)n

n!
z̄n an, (36)

where z ≡ ζ is unbounded, |z| <∞, like for the spherical geometry. The expected value of the
total energy Ê in the excited vacuum |θ′〉 is now:

〈θ′|Ê|θ′〉 = |θ|2e−2s|z|2
∞∑

n=0

~ωn
(2s)n

n!
|z|2n

= 2s|θ|2~ω|z|2 = 2s|θ|2~ωe(µ−~ω)/kBT , (37)

which is the ~ω � kBT limit of B-E and F-D statistics. Note that, unlike for the B-E and F-D
statistics, here we could “reabsorb” the chemical potential µ into the vacuum expectation value
of the total number of particles |θ|2 by setting |θ|2 = e−µ/kBT . Therefore, the introduction of µ
in our scheme is only indispensable for the F-D statistics.

7. Cosmological implications
We have separated standard (“bright”) energy Ĥ from vacuum (“dark”) energy Ξ̂ in our model.
However, we could combine both contributions to define a total Hamiltonian,

Ĥtot = Ĥ +
κ

2
Ξ̂, (38)

such that the map Ĥ 7→ Ĥtot renders the original commutation relations (17) into: [Â+, Â−] =
2κĤ, for κ = ±1, and [Â+, Â−] = −Ξ̂, for κ = 0. Hence, the vacuum energy is now given by:

〈θ|Ĥtot|θ〉 =
κ

2
〈θ|Ξ̂|θ〉 = κs|θ|2 (39)

Although we are dealing with a simplified (toy) model, we feel tempted to link this vacuum
energy to a cosmological constant, as is done in modern cosmology. From this point of view,
hyperbolic spatial geometries (κ = −1), like Anti de Sitter space-time, have positive pressure,
which causes the expansion of empty space to slow down. On the contrary, for spherical spatial
geometries (κ = 1), like de Sitter space, the expansion of empty space will tend to speed up. For
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flat space (κ = 0) we have zero cosmological constant. Note that we can make the parameter
|θ|2 as small as we like, thus eluding huge vacuum energies for either spherical or hyperbolic
geometries. Therefore, our derivation of the cosmological constant from the vacuum energy in
quantum field theory is free from the traditional drawbacks of “fine-tuning”. Moreover, the three
spatial geometries, κ = ±1, 0, considered in this article have different qualitative behaviour under
vacuum radiation at low frequencies, something that could be used in addition to experimentally
discern between these topologies.

We have presented here a quite simplified model, but we think that it grasps the essentials of
more involved instances. A proper discussion of all these vacuum phenomena inside the entire
conformal group SO(4, 2) will be developed elsewhere.
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