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Abstract. In the present note we consider a class of second order parabolic equations with
position dependent coefficients; such equations describe a diffusion of (quasi) particles with a
variable mass. We represent a solution of Cauchy–Dirichlet problem for such class of equations
in a bounded domain in the form of a limit of finite dimensional integrals of elementary functions.
Such kind of a representation is usually called Feynman formula and can be used for calculations.
Finite dimensional integrals in our Feynman formula give approximations for a functional
integral over a probability measure on a set of trajectories in the domain where the solution of
the considered problem is investigated; this measure is generated by a diffusion process with
variable diffusion coefficient and absorption on the boundary, hence, to get Feynman formula
also means to get a representation of the solution of the considered problem with the help of a
functional integral (such kind of a representation is usually called Feynman–Kac formula).

1. Introduction
In the present note we consider a class of second order parabolic equations with position
dependent coefficients; such equations describe a diffusion of (quasi) particles with a
variable mass. Quantum analogues of these (quasi) particles appear in models, describing
semiconductors, liquid crystals etc.

We represent a solution of Cauchy–Dirichlet problem for such class of equations in a bounded
domain in the form of a limit of finite dimensional integrals. Such kind of representations is
usually called Feynman formulas. Following Feynman approach, limits in Feynman formulas
can be interpreted as functional (path) integrals over suitable measures or pseudomeasures on
the set of trajectories in configuration space. Functional integrals, representing solutions of
evolutionary equations, are usually called Feynman–Kac formulas. It is Feynman–Kac formulas
that allow to investigate properties of evolutionary equations by methods of stochastic analysis.

Hence, to get Feynman formulas is just another way to get Feynman–Kac formulas. On the
other hand, Feynman formulas have their own advantages, since in most cases it is possible
to represent solutions of evolutionary equations by Feynman formulas, containing elementary
functions only, whereas corresponding Feynman–Kac formulas are actually limits of finite
dimensional integrals, containing some transitional probabilities which often can not be expressed
by elementary functions. Just this situation takes place in case of boundary value problems.

In the present work we obtain a Feynman formula for a diffusion of particles with variable
mass in a bounded domain, applying a method developed in works [3] — [5] for investigation
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of diffusion and quantum evolution of particles with constant mass on Riemannian manifolds.
This method is based on Chernoff theorem (see [9], [7]) and allows to investigate a wide class
of initial and boundary value problems for evolutionary equations with linear and non-linear
configuration space (see [2] — [8]).

2. Preliminaries
Let f(·, ·) : [0,∞)×R→ C. In papers [1], [10] the evolution of particles with position dependent
mass is described by the Hamiltonian H, such that

Hf(x) = H0f(x) + V (x)f(x)

where
H0 = −1

4
(mα(x)

∂

∂x
mβ(x)

∂

∂x
mγ(x) +mγ(x)

∂

∂x
mβ(x)

∂

∂x
mα(x))

and α + β + γ = −1. We assume that function V : R → C is continuous and function
m(·) : R → (0,∞) is twice continuously differentiable on R. If m(x) ≡ const then operator
H0 coincides with a standart quantum mechanics Hamiltonian of a one-dimensional free particle
H0 = − 1

2m
∂2

∂x2 . Under assumptions above operator H0 is symmetric and there exist continuous
functions A(·), B(·), C(·) : R→ R such that A(x) > 0 for any x ∈ R and

H0 + V = −1
2
A(·) ∂

2

∂x2
+B(·) ∂

∂x
+ C(·).

Let m ∈ N and A a continuous mapping from Rm into the space L(Rm) of linear operators
on Rm such that for any x ∈ Rm the operator A(x) is symmetric and positive. Let ∆A(x)
be the differential operator acting on ϕ being twice differentiable in x ∈ Rm as follows:
(∆A ϕ)(x) := tr(A(x)ϕ(2)(x)), where ϕ(2)(x) := (Hessϕ)(x) is the Hessian matrix of ϕ in
x ∈ Rm. Let B be a continuous vector valued function on Rm and C be a continuous scalar
function on Rm. In the sequel we consider the Hamiltonian H defined for ϕ being twice
differentiable in x ∈ Rm in the following way:

Hϕ(x) :=
1
2

(∆Aϕ)(x) + 〈B(x),∇ϕ(x)〉+ C(x)ϕ(x),

where 〈·, ·〉 denotes the euclidean scalar product in Rm.

3. Cauchy–Dirichlet problem for a diffusion of particles with a variable mass in a
bounded domain
Let G ⊂ Rm be a bounded domain. Its closure and boundary we denote by G and ∂G,
respectively. For f : [0,∞) × G → R such that f(t, ·) is twice differentiable on G for all t ≥ 0
and f(·, x) is differentiable on (0,∞) for all x ∈ G we consider the following Cauchy–Dirichlet
problem:

∂f

∂t
(t, x) = Hf(t, x), t > 0, x ∈ G,

f(0, x) = f0(x), x ∈ G, (3.1)
f(t, x) = 0, t ≥ 0, x ∈ ∂G.

Here we assume that f(t, ·) ∈ C0(G) for any t ≥ 0, where C0(G) is Banach space of
continuous functions on G vanishing on the boundary. The norm in C0(G) is defined by
‖f‖C0(G) = supx∈G |f(x)|.
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We assume that the domain G and the coefficients A, B and C satisfy sufficient conditions for
the existence of a strongly continuous semigroup (Tt)t≥0 on C0(G) providing a solution to (3.1).
Then we construct a family (F (t))t≥0 of integral operators, such that (by Chernoff theorem)

T (t) = lim
n→∞

(F (t/n))n, (3.2)

where the limit is in the strong operator topology in the space L(C0(G)) of all continuous linear
operators in C0(G). Hence, a right hand side of (3.2) gives us a Feynman formula for the solution
of the considered Cauchy–Dirichlet problem (3.1).

4. A construction of the family (F (t))t≥0

Let X be a Banach space, L(X) be the space of all continuous linear operators in X with strong
operator topology, ‖ · ‖ denotes the operator norm on L(X) and Id the identity operator in X.
If D(T ) ⊂ X is a linear subspace and T : D(T ) → X is linear (operator), then D(T ) denotes
the domain of T .

Definition 4.1 The derivative at the origin of a function F : [0, ε)→ L(X), ε > 0, is a linear
mapping F ′(0) : D(F ′(0))→ X such that

F ′(0)g := lim
t↘0

t−1(F (t)g − F (0)g),

where D(F ′(0)) is the vector space of all elements g ∈ X for which the above limit exists.

Theorem 4.2 (Chernoff theorem, see [7], [9]) Let X be a Banach space, F : [0,∞) →
L(X) be a (strongly) continuous mapping such that F (0) = Id and ‖F (t)‖ ≤ eat for some
a ∈ [0,∞) and all t ≥ 0. Let D be a linear subspace of D(F ′(0)) such that the restriction
of the operator F ′(0) to this subspace is closable. Let (L,D(L)) be this closure. If (L,D(L))
is the generator of a strongly continuous semigroup (Tt)t≥0, then for any t0 > 0 the sequence
(F (t/n))n)n∈N converges to (Tt)t≥0 as n → ∞ in the strong operator topology, uniformly with
respect to t ∈ [0, t0], i.e., Tt = limn→∞(F (t/n))n locally uniformly in L(X).

A family of operators (F (t))t≥0 is called Chernoff equivalent to the semigroup (Tt)t≥0 if this
family satisfies the assertions of the Chernoff theorem with respect to this semigroup.

Our aim is to construct a family of integral operators (F (t))t≥0, which is Chernoff equivalent
to the semigroup T (t), resolving the Cauchy–Dirichlet problem (3.1).

Let fix some ε > 0. Any function ϕ ∈ C0(G) can be extended to a continuous in
Rm function ϕ̃ with compact support in Gε, where Gε is ε-neighborhood of G in Rm, and
||ϕ(x)||C0(G) ≥ sup

x∈Rm
|ϕ̃(x)|. For each ϕ a function ϕ̃ can be chosen in such way that for any

a, b ∈ R if ϕ = aϕ1 + bϕ2 then ϕ̃ = aϕ̃1 + bϕ̃2. Such function ϕ̃ with ϕ = ϕ̃|G in sequel

we call related to ϕ. Let’s consider a set D :=
{
ϕ ∈ C0(G) |ϕ can be extended to some ϕ̃ ∈

C4
0 (Gε) with supx∈Rm |ϕ̃(x)| ≤ ‖ϕ‖C0(G) and Hϕ ∈ C0(G)

}
, here C4

0 (Gε) denotes the space
of four times continuously differentiable functions with compact support in Gε. A set of all
ϕ̃ ∈ C4

0 (Gε), such that ϕ̃|G = ϕ ∈ D, we denote as D̃. Hence, D ⊂ C0(G), D̃ ⊂ C4
0 (Gε) ⊂

C(Rm). We denote the generator of (Tt)t≥0 by (H, D(H)) and assume that the set D is a core
of (H,D(H)).

Let a(x) := detA(x). We introduce a family of operators (F1(t))t≥0 in C(Rm) such that
F1(0) = Id and for t > 0 the operator F1(t) is given by the formula:

F1(t)ϕ̃(x) =
1√

a(x)(2πt)m

∫
Rm

exp{−〈A
−1(x)(x− y), x− y〉

2t
}ϕ̃(y)dy. (4.1)
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If A is a constant matrix this family coincides with the semigroup (e
t
2

∆A)t≥0. If A is not
constant it is not so anymore. Nevertheless, the following holds:

Lemma 4.3 For ϕ̃ ∈ D̃ the derivative of F1(t)ϕ̃(x) at zero coincides with 1
2∆Aϕ̃(x) uniformly

in x ∈ Gε, i.e., for any ϕ̃ ∈ D̃ the following is valid uniformly with respect to x ∈ Gε as t↘ 0:

F1(t)ϕ̃(x) = ϕ̃(x) +
1
2

∆Aϕ̃(x) + o(t).

Proof: Let c(t, x) := (a(x)(2πt)m)−1/2, t ≥ 0, x ∈ Gε. Then

1
t
(F1(t)ϕ̃− ϕ̃)(x) =

c(t, x)
t
·

·

∫
Rm

exp{−〈A
−1(x)(x− y), x− y〉

2t
}ϕ̃(y)dy −

∫
Rm

exp{−〈A
−1(x)(x− y), x− y〉

2t
}ϕ̃(x)dy

 =

=
c(t, x)
t

∫
Rm

exp{−〈A
−1(x)(x− y), x− y〉

2t
}(ϕ̃(y)− ϕ̃(x))dy.

Since ϕ̃ ∈ C4
0 (Gε) ⊂ C4(Rm) a Taylor expansion at the point x yields

ϕ̃(y)− ϕ̃(x) = ϕ̃(1)(x)(y − x) +
1
2
ϕ̃(2)(x)(y − x)2

+
1
3!
ϕ̃(3)(x)(y − x)3 +

1
4!
ϕ̃(4)(θx+ (1− θ)y)(y − x)4,

where ϕ̃(k)(x) is understood as a k-linear functional on (Rm)k and a symbol ϕ̃(k)(x)(y−x)k stands
for the result of application of ϕ̃(k)(x) to the vector (y−x) ∈ Rm taken k times, θ ∈ [0, 1]. Hence,

1
t
(F1(t)ϕ̃− ϕ̃)(x)

=
1
t
c(t, x)

∫
Rm

e
−〈A−1(x)(x−y),x−y〉

2t (ϕ̃(1)(x)(y − x) + ...+
1
4!
ϕ̃(4)(θx+ (1− θ)y)(y − x)4)dy =

=
1
2t
c(t, x)

∫
Rm

exp{−〈A
−1(x)(x− y), x− y〉

2t
}ϕ̃(2)(x)(y − x)2dy+

+ t
1

24t2
c(t, x)

∫
Rm

exp{−〈A
−1(x)(x− y), x− y〉

2t
}ϕ̃(4)(θx+ (1− θ)y)(y − x)4dy.

Since ϕ̃(4) is bounded, the last term converges to zero as t ↘ 0 uniformly in x ∈ Gε. As in
the case of a constant A (now with a parameter), the remaining term converges to 1

2∆Aϕ̃(x) as
t↘ 0 uniformly in x ∈ Gε. �

Let us now define a family of operators (F2(t))t≥0 in C(Rm) such that F2(0) = Id and for
t > 0 the operator F2(t) is given by the formula:

F2(t)ϕ̃(x) =

=
1√

a(x)(2πt)m

∫
Rm

exp{−〈A
−1(x)(x− y), x− y〉

2t
} exp{−〈A−1B(x), x− y〉}ϕ̃(y)dy,

where A−1B(x) := A−1(x)B(x).
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Lemma 4.4 For any ϕ̃ ∈ D̃ as t↘ 0 we have uniformly with respect to x ∈ Gε:

F2(t)ϕ̃(x) = ϕ̃(x) +
t

2
∆Aϕ̃(x) + t〈B(x),∇ϕ̃(x)〉+

t

2
〈A−1B(x), B(x)〉ϕ̃(x) + o(t).

Proof: Let us notice that if ϕ̃ ∈ D̃, then also exp{−〈A−1B(x), x− ·〉}ϕ̃ ∈ D̃ for all x ∈ Gε and

F2(t)ϕ̃(x) = F1(t)(exp{−〈A−1B(x), x− ·〉}ϕ̃)(x).

By Lemma 4.3 we get

F2(t)ϕ̃(x) =

= (exp{−〈A−1B(x), x− ·〉}ϕ̃)(x) +
t

2
∆A(exp{−〈A−1B(x), x− ·〉}ϕ̃)(x) + o(t) =

= ϕ̃(x) +
t

2
tr
(
A
(
ϕ̃(2) + 2A−1B ⊗∇ϕ̃+ (A−1B ⊗A−1B)ϕ̃

))
(x) + o(t) =

= ϕ̃(x) +
t

2
∆Aϕ̃(x) + t〈B(x),∇ϕ̃(x)〉+

t

2
〈A−1B(x), B(x)〉ϕ̃(x) + o(t).

�
Let s : (0,∞) → (0,∞) be a smooth function which monotonically decreases to 0 as t ↘ 0

such that s(t) = o(t). For example, s = c arctg for some 0 < c < 1
πdiam(G). Let Gs(t) ⊂ G be

defined as Gs(t) = {x ∈ G | dist(x, ∂G) > s(t)}. Let ψs(t) : Rm → [0, 1], t > 0 be a family of
smooth functions such that ψs(t)(x) = 1 for x ∈ Gs(t), ψs(t)(x) = 0 for x ∈ Rm \ G. Hence the
family ψs(t) approximates the indicator function of the domain G pointwisely as t↘ 0.

Next let us introduce a family of operators (F3(t))t>0 acting on ϕ̃ ∈ C(Rm) as follows:

F3(t)ϕ̃(x) = ψs(t)(x)etV (x)ϕ̃(x),

where V (x) = C(x) − 1
2〈A

−1B(x), B(x)〉, x ∈ Rm. Finally, we define the family of operators
(F (t))t≥0 on C0(G) in the following way: F (0) = Id and, for t > 0 and for any ϕ ∈ C0(G),
F (t)ϕ = F3(t)F2(t)ϕ̃, where ϕ̃ is related to ϕ as above.

Lemma 4.5 For any ϕ ∈ D as t↘ 0 we have uniformly with respect to x ∈ G:

F (t)ϕ(x) = ϕ(x) +
t

2
∆Aϕ(x) + t〈B(x),∇ϕ(x)〉+ tC(x)ϕ(x) + o(t).

Proof: Since V is a continuous function, by a Taylor expansion we get etV (x) = 1 + tV (x) +o(t)
as t↘ 0 uniformly in x ∈ G. Thus, by Lemma 4.4 we get

F (t)ϕ(x) = ψs(t)(x)
(
1 + tV (x) + o(t)

)
×
(
ϕ̃(x) +

t

2
∆Aϕ̃(x) + t〈B,∇ϕ̃〉(x) +

t

2
〈A−1B,B〉ϕ̃(x) + o(t)

)
= ψs(t)

(
ϕ̃+

t

2
∆Aϕ̃+ t〈B,∇ϕ̃〉+ tCϕ̃

)
(x) + o(t) = ψs(t) (ϕ̃+ tHϕ̃) (x) + o(t)

for any ϕ̃ ∈ D̃, uniformly in x ∈ Gε.
Let us show that F (t)ϕ(x) = ϕ(x) + tHϕ(x) + o(t) as t ↘ 0, uniformly with respect

to x ∈ G, for all ϕ ∈ D. Let firstly x ∈ Gs(t). Then ψs(t)(x) = 1 and F (t)ϕ(x) =
ϕ(x) + tHϕ(x) + o(t) as t ↘ 0, uniformly with respect to x ∈ Gs(t). If x ∈ ∂G, then
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ψs(t)(x) = 0 and F (t)ϕ(x) = 0 = ϕ(x) + tHϕ(x). Finally let x ∈ G \ Gs(t). Then
|F (t)ϕ(x)− ϕ(x)− tHϕ(x)| =

∣∣(1− ψs(t)(x))(ϕ(x) + tHϕ(x)) + o(t)
∣∣ ≤ |ϕ(x) + tHϕ(x)| + o(t)

as t ↘ 0. For any x ∈ G \ Gs(t) there exist at least one xbd ∈ ∂G such that dist(x, xbd) =
dist(x, ∂G) ≤ s(t) = o(t) as t ↘ 0. Since ϕ ∈ D, we have ϕ(x) = ϕ(xbd) + ϕ̃(1)(cx)(x − xbd),
where cx = θx + (1 − θ)xbd for some θ ∈ [0, 1] and ϕ̃ is related to ϕ as above. Therefore
|ϕ(x)| ≤ s(t) supy∈Rm |ϕ̃(1)(y)| = o(t) as t ↘ 0, uniformly with respect to x ∈ G \ Gs(t). Since
Hϕ ∈ C0(G), also Hϕ(x) → 0 uniformly with respect to x ∈ G \ Gs(t) for t ↘ 0. Thus
tHϕ = o(t). Therefore |F (t)ϕ(x)− ϕ(x)− tHϕ(x)| ≤ o(t) as t ↘ 0, uniformly with respect
to x ∈ G \ Gs(t). Summarizing, we get for any ϕ ∈ D and uniformly with respect to x ∈ G:
F (t)ϕ(x) = ϕ(x) + tHϕ(x) + o(t) as t↘ 0. �

Theorem 4.6 Let (Tt)t≥0 be the strongly continuous semigroup on C0(G) providing a solution
to the Cauchy-Dirichlet problem (3.1). Then the family of operators (F (t))t≥0 is Chernoff
equivalent to this semigroup and therefore

Tt = lim
n→∞

[F (t/n)]n

in L(C0(G)), locally uniformly with respect to t ≥ 0.

Proof: We have to prove that (F (t))t≥0 is Chernoff equivalent to (Tt)t≥0. Since by Lemma 4.5
the derivative of F (t) on C0(G) at zero coincides with the generator of the semigroup (Tt)t≥0

on its core D, we only need to estimate the norm of the operators F (t) and to show strong
continuity of the family (F (t))t≥0. The norm is estimated as follows (here X = C0(G) and ϕ̃ is
related to ϕ as above): ||F (t)|| =

= sup
||ϕ||X≤1

sup
x∈G

∣∣∣∣ψs(t)(x)etV (x)

√
a(x)(2πt)m

∫
Rm

exp{−〈A
−1(x)(x−y),x−y〉

2t } exp{−〈A−1B(x), x− y〉}ϕ̃(y)dy
∣∣∣∣ =

= sup
||ϕ||X≤1

sup
x∈G

∣∣∣∣ψs(t)(x)etV (x)

√
a(x)(2πt)m

∫
Rm

exp{−〈A
−1(x)(x−y+tB(x)),x−y+tB(x)〉

2t } exp{ t2〈A
−1B,B〉(x)}ϕ̃(y)dy

∣∣∣∣ ≤
≤ et supx∈G |C(x)| sup

x∈G

∣∣∣∣ 1√
a(x)(2πt)m

∫
Rm

exp{−〈A
−1(x)(x−y+tB(x)),x−y+tB(x)〉

2t }d(y − tB(x))
∣∣∣∣ =

= et supx∈G |C(x)|.
Next let us show strong continuity of the family (F (t))t≥0. For this it is sufficient to show

that limt→t0 ‖F (t)ϕ − F (t0)ϕ‖C0(G) = 0 for all ϕ ∈ D and any t0 ≥ 0. For t0 > 0 this is true,
because all functions in the formula of F (t) are continuous with respect to t ∈ (0,+∞), ϕ̃ is
continuous with compact support, and exp{−〈A

−1(x)(x−y),x−y〉
2t } is a continuous function of the

three arguments (t, x, y) ∈ [t1, t2]×Gε ×Gε, where t0 ∈ (t1, t2), [t1, t2] ⊂ (0,∞).
If ϕ ∈ D, then

lim
t↘0

1√
a(x)(2πt)m

∫
Rm

exp{−〈A
−1(x)(x− y), x− y〉

2t
}ϕ̃(y)d(y) = ϕ(x),

uniformly in x ∈ G, since for any fixed x ∈ G

fxt (y) =
1√

a(x)(2πt)m
exp{−〈A

−1(x)(x− y), x− y〉
2t

}, y ∈ Rm,

tends to the Dirac function δx as t ↘ 0 and ϕ̃ is bounded and uniformly continuous. Hence,
limt↘0 F (t)ϕ = ϕ in C0(G) for all ϕ ∈ D. Thus, by Chernoff’s theorem the statement follows.
�
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5. Feynman and Feynman–Kac formulae
By theorem (4.6) the solution f(t, x) of Cauchy–Dirichlet problem ( 3.1) with initial condition
f(0, x) = f0(x) can be obtained by the formula f(t, x) = lim

n→∞
[F (t/n)]nf0(x), where for any

ϕ ∈ C0(G)

F (t)ϕ(x) = ψs(t)(x)etV (x)

√
a(x)(2πt)m

∫
Rm

exp{− 〈A
−1(x)(x−y),x−y〉

2t } exp{−〈A−1B(x), x− y〉}ϕ̃(y)dy.

Thus,

f(t, x) = lim
n→∞

∫
Rm

...

∫
Rm

 n∏
j=1

ψs(t/n)(xj)

 exp{ t
n

n∑
j=1

V (xj−1)}·

· exp{
n∑
j=1

〈A−1B(xj−1), xj − xj−1〉}pA(
t

n
, x0, x1)...pA(

t

n
, xn−1, xn)f̃0(xn)dx1...dxn, (5.1)

where pA(t, x, y) = 1√
a(x)(2πt)m

exp{− 〈A
−1(x)(x−y),x−y〉

2t }, x0 = x and f̃0 is related to f0.

Let a symbol γG denote the indicator of the set G, i.e. γG(x) = 1 if x ∈ G and γG(x) = 0
if x /∈ G. Neither the speed of convergence of s(t) → 0 (if it is o(t)), nor the choice of a family
{ψs(t)} approximating γG when t→ 0 can change the limit in the formula (5.1). Since ψs(t) is a
smooth function with a compact support in G and f̃0 is a continuous function with a compact
support in Gε, we actually integrate a continuous function over a compact Gn−1 × Gε in the
formula (5.1) and, hence, as ψs(t) → γG when t→ 0 we can choose s(t/n) such that∣∣∣∣∣∣∣

∫
Gε

∫
G

n−1

exp{ t
n

n∑
j=1

V (xj−1)} exp{
n∑
j=1

〈A−1B(xj−1), xj − xj−1〉}pA(t/n, x0, x1) · ...

... · pA(t/n, xn−1, xn)f̃0(xn)

(
n∏
k=1

(ψs(t/n)(xk−1)− γG(xk−1))

)
dx1...dxn

∣∣∣∣∣ < 1
n
,

Then the limit in the formula (5.1) coincides with the following limit:

f(t, x) = lim
n→∞

∫
Gε

∫
G

n−1

exp{ t
n

n∑
j=1

V (xj−1)} exp{
n∑
j=1

〈A−1B(xj−1), xj − xj−1〉}·

· pA(t/n, x0, x1)...pA(t/n, xn−1, xn)f̃0(xn)dx1...dxn. (5.2)

Let F xn (xn) =
∫

G
n−1

exp{ tn
n∑
j=1

V (xj−1)} exp{
n∑
j=1
〈A−1B(xj−1), xj − xj−1〉}pA(t/n, x0, x1)...

...pA(t/n, xn−1, xn)dx1...dxn−1. Then f(t, x) = lim
n→∞

∫
Gε

f̃0(y)F xn (y)dy. Since for any ε > 0 the

function f(t, x) does not depend on an extension f̃0 of the initial condition f0 onto Gε \ G,
we get f(t, x) = lim

ε→0
lim
n→∞

∫
Gε

f̃0(y)F xn (y)dy and by Lebesgue dominated convergence theorem

f(t, x) = lim
ε→0

∫
Gε

f̃0(y) lim
n→∞

F xn (y)dy =
∫
G

f0(y) lim
n→∞

F xn (y)dy = lim
n→∞

∫
G

f0(y)F xn (y)dy. Hence, the

following theorem is proved:
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Theorem 5.1 Let f(t, x) be a solution of Cauchy–Dirichlet problem ( 3.1). Then the following
Feynman formula is true:

f(t, x) = lim
n→∞

∫
G

...

∫
G

exp{ t
n

n∑
j=1

V (xj−1)} exp{
n∑
j=1

〈A−1B(xj−1), xj − xj−1〉}·

· pA(t/n, x0, x1)...pA(t/n, xn−1, xn)f0(xn)dx1...dxn. (5.3)

Remark 5.2. One can show in a similar way that the solution of Cauchy Problem

∂f

∂t
(t, x) = Hf(t, x),

f(0, x) = f0(x)

in the whole space Rm can be represented by the same Feynman formula (5.3) where integrals
over G are substituted by integrals over Rm.

Remark 5.3. Let now

Φ(ξ) = exp{−1
2

t∫
0

〈A−1B(ξ(τ)), B(ξ(τ))〉dτ}·

· exp{
t∫

0

〈A−1B(ξ(τ)), dξ(τ)〉} · exp{
t∫

0

C(ξ(τ))dτ}f0(ξ(t)).

Using a fact that the equation ∂f
∂t (t, x) = 1

2∆Af(t, x) is a Kolmogorov equation for the Ito
stochastic differential equation dξ(t) =

√
A(ξ(t))dw(t) (where

√
A(x) means the positive square

root), one can show that finite dimensional integrals at right hand side of the Feynman formula
( 5.3) are finite dimensional approximations of an integral of the function Φ over a measure µ,
generated by a diffusion process, in the domain G with absorption on the boundary, governed
by this stochastic differential equation. This means that the following Feynman–Kac formula is
true:

f(t, x) =
∫

C([0,t],G)

Φ(ξ)µ(dξ).

It is worth noticing, that just the Feynman formula, containing elementary functions only, gives
an effective method to calculate the integral in the Feynman–Kac formula.
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