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Solvable PT -symmetric potentials in 2 and 3

dimensions

Géza Lévai
Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen,
Pf. 51, Hungary 4001

E-mail: levai@atomki.hu

Abstract. The solution of non-central PT -symmetric potentials is discussed by the separation
of the variables in polar and angular coordinates. Conditions are formulated to guarantee the
separation of the variables and the PT symmetry of the potential. The original eigenvalue
equation is separated into one-dimensional Schrödinger-type differential equations. The
importance of the boundary conditions, especially that of the periodic boundary condition of the
azimuthal equation is pointed out. Further conditions leading to exact solutions of the whole
problem are also formulated. An example combining the harmonic oscillator and the Scarf
I potential in the radial and polar equation is discussed in detail, and the bound-state wave
functions and the energy eigenvalues are derived. The spectrum exhibits partial degeneracies
similar to those observed in the spectrum of the isotropic harmonic oscillator.

1. Introduction
Since the introduction of PT -symmetric quantum mechanics [1] much effort has been devoted
to exploring the physical significance of this theory and its connection with ordinary Hermitian
quantum mechanics. It was found that PT -symmetric quantum mechanics is a special case of
pseudo-Hermiticity [2] and this can explain some of the unusual features of PT -symmetric
systems, such as the partly or fully real energy spectrum and the conservation of norm.
The probabilistic interpretation of PT -symmetric quantum mechanics, and in general pseudo-
Hermitian models also received much attention, and positive definit metric operators have been
cosntructed [3]. Although non-Hermitian theories that make use of modified metric operators
have been known previously under various names, e.g. pseudo- [4], quasi- [5] and crypto-
Hermiticity [6], the role of PT -symmetric quantum mechanics is indisputable in reviving interest
in these theories.

Exactly solvable quantum mechanical models are indispensable in gaining insight in the
physical background of any model, and this is also the case with PT -symmetric quantum
mechanics. The PT -symmetric versions of real potentials have been constructed, and have
been used to explore various aspects of PT symmetry, such as identifing potentials with real
and complex eigenvalues [7, 8, 9, 10, 11, 12, 13], describing the mechanism of the spontaneous
breakdown of PT symmetry [14, 15], combining PT -symmetry with supersymmetric [10, 16]
and algebraic [17, 18, 19] techniques, determining the normalization constants and pseudo-norm
of PT -symmetric potentials [15, 20, 21], etc.

The scope of investigations has been extended from one-dimensional non-relativistic problems,
in various directions, such as scattering solutions [18, 22], periodic structures [23], coupled
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channels [24], more particles [25] and relativistic wave equations [26]. After some first efforts
[27, 28, 29] the systematic extension of PT -symmetric potentials in higher dimensions has also
started [30, 31]. In these studies the separation of the variables has been applied and the multi-
dimensional problem has been reduced to one-dimensional eigenvalue problems resembling the
Schrödinger equation. The importance of the angular sector in introducing the spontaneous
breakdown of PT symmetry has been pointed out in the case of both two- [30] and three-
dimensional [31] models. Similar studies have been performed earlier on real non-central
potentials [32], nevertheless, the PT symmetry requirement makes these studies rather more
complicated. The previous works focused more on the formal solution of PT -symmetric
potentials in two and three dimensions, and actual solvable examples with complete analytical
solutions have not been given. The aim of the present work is to fill this gap by presenting
explicit examples for solvable models.

In section 2 the general formalism is presented for both two- and three-dimensional potentials
and conditions are formulated for the implementation of PT symmetry. Section 3 deals with
further conditions allowing for the exact solution of the separated eigenvalue equations in terms of
known solvable potentials, and it also contains the explicit wave functions and energy eigenvalues
of a concrete example. Finally in section 4 a summary of the results is given.

2. Separation of the variables and conditions for PT symmetry
Let us consider the Schrödinger equation with a general non-central potential and constant mass(

p2

2m
+ V (r)

)
ψ(r) = − h̄2

2m
∆ψ(r) + V (r)ψ(r) = Eψ(r) . (1)

In what follows we specify (1) for two and three spatial dimensions and investigate the conditions
under which its formal solution is possible by the separation of the angular and radial variables.
We also formulate the conditions for the PT symmetry of the potential, which also implies the
PT symmetry of the corresponding Hamiltonian, as the kinetic term is always PT -symmetric.
Without the loss of generality we can use the units 2m = h̄ = 1.

2.1. PT -symmetric Hamiltonians in 2 dimensions
The Schrödinger equation (1) expressed in terms of polar coordinates in two dimensions is

1
ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+

1
ρ2

∂2ψ

∂ϕ2
− V (ρ, ϕ)ψ + Eψ = 0 . (2)

With the substitution
ψ(ρ, ϕ) = ρ−1/2φ(ρ)τ(ϕ) (3)

the equation

φ′′τ +
1
ρ2
φτ ′′ −

(
V (ρ, ϕ)− 1

4ρ2
− E

)
φτ = 0 (4)

is obtained, where prime denotes derivation with respect to the corresponding single variable
and ρ ∈ [0,∞) and ϕ ∈ [0, 2π]. The separation of the radial and angular variables is possible, if
τ(ϕ) satisfies the equation

τ ′′ = (K(ϕ)− k)τ . (5)

In this case the potential can be written as the sum of a central and a non-central term as

V (ρ, ϕ) = V0(ρ) +
1
ρ2
K(ϕ) . (6)
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The condition for PT symmetry is then

V (ρ, ϕ) = V ∗(ρ, ϕ+ π) , (7)

which means that the central potential component V0(ρ) has to be real and K(ϕ) has to satisfy

K∗(ϕ+ π) = K(ϕ) . (8)

Equations (5) and (8) indicate that the PT symmetry of the full two-dimensional potential (6)
generates a PT -symmetric Hamiltonian in the angular variable too, although the space reflection
operator assigned to this problem has to be defined as

Pϕϕ = ϕ+ π . (9)

Furthermore, the problem has to be defined on the ϕ ∈ [0, 2π] domain with periodic boundary
conditions τ(ϕ) = τ(ϕ + 2π) and τ ′(ϕ) = τ ′(ϕ + 2π). Note that τ(ϕ) need not vanish at the
boundaries, so the solutions of (5) are less restricted than those of a proper Schrödinger equation
defined on a finite domain.

The eigenvalue k of equation (5) can be real or complex, depending on whether the PT
symmetry of this angular problem is unbroken or spontaneously broken. It is also important
to note that (8) implies different constraints on the real and imaginary component of K(ϕ):
KR(ϕ + π) = KR(ϕ) and KI(ϕ + π) = −KI(ϕ). In the case of a periodic K(ϕ) this means
that the periodicity of the two components have to be different, with even and odd number of
periods for KR(ϕ) and KI(ϕ). This is analogous to the usual V ∗(−x) = V (x) PT symmetry
requirement in one dimension, where the real and imaginary potential components have to be
even and odd functions of the coordinate, respectively.

Separating the angular parts, we are left with the equation

−φ′′ +
[
V0(ρ) +

(
k − 1

4

)
1
ρ2

]
φ− Eφ = 0 , (10)

in which the eigenvalue k of the angular equation (5) appears explicitly. Equation (10) is
similar to the radial Schrödinger equation obtained in the case of real central potentials, and
the boundary conditions also have to be chosen similarly. It is notable though, that the
“angular momentum” can now take on complex values too if the PT symmetry of equation
(5) is spontaneously broken. In this case the energy eigenvalues E will also be complex, which
means that the PT symmetry of the whole two-dimensional system will also be spontaneously
broken. Taking the complex conjugate of (10) it is straightforward to see that there will be two
complex conjugate energy eigenvalues originating from the complex conjugate values k and k∗.
This is similar to the situation in the case of the spontaneous breakdown of the PT symmetry
in one-dimensional problems.

2.2. PT -symmetric Hamiltonians in 3 dimensions
Using polar coordinates equation (1) takes the form

1
r2

∂

∂r

(
r2
∂ψ

∂r

)
+

1
r2
∂2ψ

∂θ2
+

1
r2

cot θ
∂ψ

∂θ
+

1
r2 sin2 θ

∂2ψ

∂ϕ2
− V (r, θ, ϕ)ψ + Eψ = 0 . (11)

Factorizing the solutions as

ψ(r, θ, ϕ) = r−1φ(r) sin−1/2 ω(θ)τ(ϕ) , (12)

V International Symposium on Quantum Theory and Symmetries IOP Publishing
Journal of Physics: Conference Series 128 (2008) 012045 doi:10.1088/1742-6596/128/1/012045

3



where r ∈ [0,∞), θ ∈ [0, π] and ϕ ∈ [0, 2π] we obtain the three-dimensional analogue of equation
(4):

φ′′ωτ +
1
r2
φω′′τ +

1
r2 sin2 θ

φωτ ′′ −
(
V (r, θ, ϕ)− 1

4r2
− 1

4r2 sin2 θ
− E

)
φωτ = 0 . (13)

The separation of the variables is possible, if τ(ϕ) satisfies (5) as in the two-dimensional case,
while for ω(θ) a similar second-order differential equation holds:

ω′′ = (P (θ)− p)ω , (14)

with the difference that the boundary conditions need not be periodic. Similarly to τ(ϕ), ω(θ)
need not vanish at the boundaries either, so, again solutions beyond the physical wave functions
of one-dimensional confined potentials are allowed.

Making use of the angular functions K(ϕ) and P (θ), the non-central potential can be written
as

V (r, θ, ϕ) = V0(r) +
K(ϕ)
r2 sin2 θ

+
P (θ)
r2

+
1

r2 sin2 θ

(
1
4
− k

)
, (15)

Here V0(r) is a spherical potential, which appears in a radial equation

−φ′′ +
[
V0(r) +

1
r2

(
p− 1

4

)]
φ− Eφ = 0 . (16)

Similarly to the two-dimensional case, equation (16) is formally identical with a radial
Schrödinger equation in which the l(l + 1) angular momentum term is replaced by p − 1/4,
where p can be real or imaginary, depending on the solution of the angular equation (14). It is
notable that p is related to the “angular momentum” via p = (l + 1/2)2.

The conditions under which the non-central potential (15) is PT -symmetric are determined
by the PT symmetry of the angular equations (5) and (14). Considering that the P operator
acts like P : r→ −r, the PT operation can be factorized into angular terms as

P = PθPϕ , (17)
Pθθ = π − θ , (18)

where Pϕ is the same as in the two-dimensional case: (9). From equations (17), (18) and (9) it
is seen that the PT transform of (15) is

V (r, θ, ϕ) = V ∗(r, π − θ, ϕ+ π) (19)

= V ∗0 (r) +
K∗(ϕ+ π)
r2 sin2 θ

+
P ∗(π − θ)

r2
+

1
r2 sin2 θ

(
1
4
− k∗

)
. (20)

This implies the following restrictions of the quantities appearing in the expression (15):

V0(r) = V ∗0 (r) , (21)
P ∗(π − θ) = P (θ) , (22)
K∗(ϕ+ π) = K(ϕ) , (23)

k∗ = k . (24)

This means that the PT symmetry of the non-central potential (15) hinges on the PT symmetry
of the angular equations, while further conditions require the reality of the central potential
component and that of k, i.e. the eigenvalue of the equation (5). It is important to note that
the eigenvalue p of the polar equation (14) need not be real. Note that if p is real, then (16)
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becomes an ordinary radial Schrödinger equation with real angular momenta and real energy
eigenvalue E. On the contrary, if p is complex, then the energy eigenvalue of (16) and thus
that of the whole Hamiltonian (1) E will be complex, i.e. the PT symmetry of (1) will be
spontaneously broken. Furthermore, in this case E∗ will also be an eigenvalue belonging to p∗,
as can be seen from the complex conjugation of (16). This was also the case in two dimensions,
where k played the role of p.

3. Conditions for exact solvability
The results of section 2 indicate that the general solution of the Schrödinger equation is possible
by solving the angular and radial equations such that the energy eigenvalues E of the Schrödinger
equation (1) will be supplied by the energy eigenvalues of the radial equation, in which the role
of the “angular momentum” is played by the eigenvalue of a radial equation (that of (5) for d = 2
and that of (14) for d = 3). The energy eigenvalues E will be real or complex depending on
whether the “angular momentum” is real or complex. Furthermore in the three-dimensional case
the eigenvalue of the azimuthal equation (5) appear explicitly in the non-central component of
the potential function (15), so further considerations have to be made if we expect the potential
to be state-independent. In this section we discuss the conditions under which the exact discrete
solutions of the non-central PT -symmetric potentials can be given, and illustrate the results with
some examples. It turns out that the solutions of equation (5) play a crucial role in both the
two- and the three-dimensional cases.

3.1. Solving the radial equations
Due to the analogous structure of equations (10) and (16) it is reasonable to discuss their
solution jointly. Exact solution of this type of equation with arbitrary value of the “angular
momentum” and the principal quantum number is possible for the harmonic oscillator, Coulomb
and square well potentials. Usually these potentials are discussed with integer number of the
angular momentum l, although the results are easily generalized to non-integer real values too, as
is the case with the Kratzer potential, for example [33]. Table 1 contains the quantities relevant
to the harmonic oscillator and Coulomb potentials, together with the appropriate substitutions
that lead to the exact solution of equations (10) and (16). Note that the formulae allow complex
values of the “angular momentum” too, which occur as complex conjugate pairs in the case
of the spontaneous breakdown of PT symmetry. The wave functions are expressed in terms
of generalized Laguerre polynomials [34] in both cases. Note that in the substitution for l the
indefinite sign comes from the square root taken from k = (l + 1

2)2 and p = (l + 1
2)2.

When the radial potential is the infinite square well, the solutions can be expressed in terms
of Bessel functions the order of which is related to l [33]. However, the energy eigenvalues
cannot be expressed in closed form in this case, because they are determined by the zeros of the
Bessel functions. Nevertheless, the square well potential can be used to construct non-central
PT -symmetric potentials with exact solutions.

Some solutions can also be obtained for arbitrary k or p for quasi-exactly solvable (QES)
potentials [37] in the sense that the first few solutions (up to a given principal quantum number)
can be determined exactly then. There are many more solvable potentials for the special value
of k = 1/4 or p = 1/4 (these are the ones solvable in the usual framework for s waves only), but
these are unimportant from the point of view of constructing PT -symmetric potentials.

3.2. Solving the angular equation in d = 2
The most important prescriptions here are the unusual PT symmetry requirement (23) of the
“potential” K(ϕ) and the periodic boundary conditions of the solutions.

The simplest choice is applying the real infinite square well as a special PT -symmetric
potential. Then K(ϕ) = 0 so (6) reduces to the real central potential V0(ρ). The general

V International Symposium on Quantum Theory and Symmetries IOP Publishing
Journal of Physics: Conference Series 128 (2008) 012045 doi:10.1088/1742-6596/128/1/012045

5



Table 1. The energy eigenvalues and wave functions of the harmonic oscillator and Coulomb
potentials with the substitutions necessary to obtain the exact solutions of the radial Schrödinger
equations (10) and (16) in two and three dimensions. The notations of [35] and [36] are followed.

Harmonic oscillator Coulomb potential

Potential ω2

4 x
2 + l(l+1)

x2 − e2

x + l(l+1)
x2

En (2n+ l + 3
2)ω − e4

4(n+l+1)2

φn(x) CHOxl+1 exp(−ωx2/4)L
(l+ 1

2
)

n (ω2x
2) CCxl+1 exp(− e2x

2(n+l+1))L
(2l+1)
n ( e2x

n+l+1)
x for d = 2 ρ ρ

l for d = 2 ±k1/2 + 1
2 ±k1/2 + 1

2
x for d = 3 r r

l for d = 2 ±p1/2 + 1
2 ±p1/2 + 1

2

solutions can be written in terms of the exponential functions e±imϕ, but in order to construct
τ(ϕ) functions that are the eigenfunctions of the PϕT operator (see (9)) with unit eigenvalue, a
special combination of them has to be taken:

τm(ϕ) =
im

(2π)1/2
cos(mϕ) . (25)

These wave functions are PT -normalized as 〈τn|Pϕ|τm〉 = δnm(−1)m and the corresponding
energy eigenvalues are k = km = m2. Nothing changes essentially if K(ϕ) is chosen to be a real
constant: this case corresponds to a redefinition of the “angular momentum” as the relation of
k and m is changed.

Further solutions can be obtained by appling exactly solvable PT -symmetric potentials
defined on a finite domain, such as the PT -symmetric Scarf I [20] or Rosen–Morse I [21]
potentials. Due to the requirement (23), however, these potentials have to be defined in two (or
even number of) separate domains ϕ ∈ [0, 2π], with periodic boundary conditions. One problem
with these potentials is that they possess inverse-square-type singularity at the boundaries,
which will thus separate the segments from each other by an impenetrable wall. This can be
avoided by using parameters that result in a weakly attractive singularity at the boundaries,
which would, in principle allow communication between the individual segments. It is notable
that considering these potentials under the usual PT -symmetry requirements and with solutions
vanishing at the boundaries, only real energy eigenvalues can be obtained [20, 21].

Let us now turn to semi-analytically solvable potentials. Examples for this are the
combination of imaginary step potentials on a ring [28, 29]. Due to the periodic boundary
conditions the energy eigenvalues of these systems asymptotically go to those of the infinite
square well, but the number and arrangement of the steps are also reflected in the local relative
position of the levels. The solutions up to 20 or so can be easily determined for these potentials
by graphical and analytical methods. It was also found that by increasing non-Hermiticity (i.e.
the height of the steps), complex-energy solutions appear at a certain point [29]. With the use of
these potentials in (5) therefore at least a finite set of the solutions of non-central 2-dimensional
PT -symmetric potentials can be handled. It has to be noted that the potential in [28] does not
obey (23), because it has even number of imaginary steps on the ring, nevertheless, the results
are instructive to the case considered here too.

Further possibility could be applying PT -symmetric arrangements of Dirac delta potentials
[23] or attempting to construct the Lamé-type potentials [38] with PT symmetry.
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3.3. Solving the angular equations in d = 3
Equation (5) appears in the three-dimensional case as the azimuthal equation, and since the
boundary conditions are the same as in the two-dimensional case, the solutions outlined in
subsection 3.2 can be used here too. An important difference is, however, that the eigenvalue k
of equation (5) appears now in the potential function (15), rather than in the radial equation
(16), where its role is taken over by p, the eigenvalue of equation (14).

In what follows, therefore we discuss the exact solutions of the polar equation (14). When
discussing the exact solution of this equation, it is worthwhile to modify the formalism in order
to handle the θ-dependent terms in (15) more consistently. Let us modify (14) such that we
introduce in it a term that depends on the eigenvalue k of equation (5):

ω′′ = (P (θ)− p)ω ≡
(
P̃ (θ) +

k

sin2 θ
− p

)
ω . (26)

Then (15) is formally simplified to a form which does not contain the constant k explicitly:

V (r, θ, ϕ) = V0(r) +
K(ϕ)
r2 sin2 θ

+
P̃ (θ)
r2

+
1

4r2 sin2 θ
. (27)

The state-independence of V (r, θ, ϕ) is thus achieved at the price of transferring k-dependence
into (26). However, when our objective is finding solvable potentials in 3 dimensions, the closed
solutions of (26) also have to be determined. Unfortunately, the range of exactly solvable
potentials containing a sin−2 θ term is rather limited. In fact, considering potentials that are
non-singular within the θ ∈ (0, π) domain, it is resticted to the Scarf I and Rosen–Morse I
potentials (see e.g. [7]).

As a further aspect of this modification we note that prescribing the PT -invariance of
V (r, θ, ϕ) leads to the (21) and (23) conditions and the P̃ ∗(π − θ) = P̃ (θ) requirement. This is
equivalent with the already established conditions, i.e. (22) and (24), of which the latter one can
be dropped if P (θ) is a potential that contains a sin−2 θ term. In summary, the modification of
the formalism by (26) has no effect on the results as long as we are interested in exactly solvable
PT -symmetric potentials in 3 dimensions.

Considering the importance of the PT -symmetric Scarf I [20] and Rosen–Morse I [21]
potentials from the point of view of constructing exactly solvable PT -symmetric potentials
in three dimensions, it seems worthwhile to present the most important results adapted to the
present situation.

In order to use the results of [20], first a coordinate shift θ = x+ π
2 is necessary to define the

Scarf I potential in the right domain θ ∈ [0, π]. Obviously, this does not influence the results in
any ways. Applying the PT -symmetric Scarf I potential in (14) one then gets

P (θ) =

(
α2 + β2

2
− 1

4

)
1

sin2 θ
− α2 − β2

2
cos θ
sin2 θ

(28)

and

pj =
(
j +

α+ β + 1
2

)2

, (29)

while the bound-state solutions are expressed in terms of Jacobi polynomials as

ωj(θ) = CSIj (1 + cos θ)α/2+1/4(1− cos θ)β/2+1/4P
(β,α)
j (cos θ) . (30)

The normalization constants have been determined in [7] such that Pθωj(θ) = ωj(θ). The
corresponding expressions for the PT -symmetric Rosen–Morse I potential [21] are

P (θ) =
(
j +

α+ β

2

)(
j +

α+ β

2
+ 1

)
1

sin2 θ
+ i

α2 − β2

2
cot θ , (31)
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Table 2. Expressions for the potential (15), the α and β parameters and the relation of the
“angular momentum” l of the radial equations with p, when the PT -symmetric Scarf I and
Rosen–Morse I potentials are used in the polar equation (14).

Scarf I Rosen–Morse I

V (r, θ, ϕ) V0(r) + K(ϕ)
r2 sin2 θ

+ A
r2 sin2 θ

− B cos θ
r2 sin2 θ

V0(r) + K(ϕ)
r2 sin2 θ

+ A
r2 sin2 θ

+ iB
r2

cot θ

A α2
m+β2

m
2 − km , real

(
j + αjm+βjm+1

2

)2
− km , real

B α2
m−β2

m
2 , imaginary

α2
jm−β

2
jm

2 , real
α αm = ±(A+B + km)1/2 αjm = ±

[
(A+ km)1/2 − j − 1

2

]
±B

2

[
(A+ km)1/2 − j − 1

2

]−1

β βm = ±(A−B + km)1/2 βjm = ±
[
(A+ km)1/2 − j − 1

2

]
∓B

2

[
(A+ km)1/2 − j − 1

2

]−1

(l + 1
2)2 pjm =

(
j + αm+βm+1

2

)2
pjm =

(
αjm+βjm

2

)2
+
(
αjm−βjm

2

)2

pj =
(
αj + βj

2

)2

+
(
αj − βj

2

)2

(32)

and
ωj(θ) = CRMI

j (1 + i cot θ)αj/2(1− i cot θ)βj/2+1/4P
(αj ,βj)
j (i cot θ) . (33)

Note that in (31) we used the original form of the potential, which contains the principal quantum
number j. Obviously, the j-dependence of the potential has to be cancelled by the appropriate
choice of the parameters (hence the indices in αj and βj), however, the above expression is more
suited to the application of the Rosen–Morse I potential in the present context.

Finally, we note that in principle the Pöschl–Teller I potential could also be applied in the
polar equation as another trigonometric potential containing the sin−2 θ term [35, 7], however,
in this case the other term is cos−2 θ, which would introduce a singularity at θ = π/2. Defining
it only in one of the domains and then extending the length scale as θ → 2θ would only simply
recover the Scarf I potential.

3.4. Illustration
As an example, let us consider the potential

V (r, θ, ϕ) =
ω2

4
r2 +

A

r2 sin2 θ
− B cos θ
r2 sin2 θ

(34)

which is nothing but (15) with the harmonic oscillator, the Scarf I potential and the free motion
in the r, θ and ϕ variables, respectively. Since K(ϕ) = 0, the solution of the azimuthal equation
(5) is given by (25) with km = m2, so this latter quantity has to be substituted into αm and βm
in Table 2.

Making use of the results from Table 1 and equations (30) and (25), the solution of the
potential (34) are given by

ψ(r, θ, ϕ) =
im

(2π)1/2
CHOn CSIj (1 + cos θ)α/2+1/4(1− cos θ)β/2+1/4P (β,α)(cos θ)j

×rlm+1 exp(−ωr2/4)L
(lm+ 1

2
)

n (
ω

2
r2) cos(mϕ) , (35)
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where

αm = ±(A+B + km)1/2 (36)

βm = ±(A−B + km)1/2 (37)

lm = ±
(
j +

αm + βm + 1
2

)
− 1

2
(38)

and B is imaginary. It is seen that there are several possible choices for choosing the signs in the
formulae. It can be shown that the solutions of the ordinary harmonic oscillator (or any central
potential) can be obtained as a special case if opposite signs are chosen in equations (36) and
(37), while in (38) the positive sign has to taken.

The energy eigenvalues of this potential will then be

Enjm =
(

2n+ j +
αm + βm

2
+

3
2

)
ω . (39)

The spectrum will be real or complex depending on whether the α∗m = βm or the α∗m = −βm
relation holds.

Due to the somewhat complicated dependence of αm and βm on m, the spectrum is
considerably less simple than in the case of the ordinary isotropic harmonic oscillator.
Nevertheless, there are degeneracy patterns in it, as when m is fixed, states with the same
value of 2n + j have degenerate eigenvalues. This is similar to the degeneracy observed in the
energy spectrum of the isotropic harmonic oscillator. Operators increasing/decreasing n with
one unit and decreasing/increasing j by two units can be constructed, so in any fixed-m subspace
similar operators can act as in the case of the isotropic harmonic oscillator (see e.g. [39]).

Similar results could be obtained applying the Coulomb potential as V0(r), and both radial
potentials could be combined with the Rosen–Morse I potential in the polar angle variable. The
degeneracy pattern of the energy spectrum would be less rich in that case, because the “angular
momentum” depends on j in a more complicated form (see Table 2), so finding combinations of
n and j that lead to the same energy are less probable.

Finally, the free motion in the azimuthal variable can also be replaced with more general
potentials, as has been discussed in subsection (3.2). The dependence on the results on m
becomes more complicated then (including the case when even there is no closed formula for km
in terms of m), so the complexity of the situation certainly increases.

4. Summary and outlook
We discussed non-central PT -symmetric quantum potentials in 2 and 3 dimensions by separating
the variables in radial and angular variables. The original problem can then be reduced
to two or three ordinary Schrödinger equation eigenvalue problem with various boundary
conditions. The PT symmetry of the whole potential also introduces conditions for the
“potentials” and eigenvalues appearing in the separated eigenvalue equations. The role of the
boundary conditions, and in particular, that of the periodic boundary condition characterizing
the azimuthal equation has been discussed. It was shown that although usual one-dimensional
potentials can be used to formulate the angular equations, some care has to be taken in adapting
these systems to the actual situation.

We also analyzed the possible exact solutions of the separate eigenvalue equations. The
radial equation turned out to be similar to the ordinary radial Schrödinger equation, with the
difference that the “angular momentum” appearing in it can take on complex, as well as real
values. In the former case the energy eigenvalues appear in complex conjugate pairs, as is the
case also in one-dimensional PT -symmetric potentials. Exact solutions of the radial equation
can be obtained using the harmonic oscillator and the Coulomb potentials. It is notable that
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in one-dimensional PT -symmetric quantum mechanics the Coulomb potential can be discussed
only on trajectories outside the real x axis, because otherwise the boundary conditions cannot
be enforced [40, 7].

The analysis of the polar equation showed that its exact solutions are possible with potentials
containing the sin−2 θ term, and this indicated the important role of the Scarf I and Rosen–Morse
I potentials.

Finally, we constructed an exactly solvable PT -symmetric potential using the harmonic
oscillator, the Scarf I potential and the the free particle in the radial, polar and azimuthal
coordinates and determined its bound-state wave functions and energy eigenvalues. The energy
spectrum exhibited degeneracies similar to those observed in the case of the (real) isotropic
harmonic oscillator, although the spectrum is separated to subspaces defined by the quantum
number m.
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