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Abstract. A quantum mechanical theory with time asymmetry intrinsic to states (or
observables) features the concept of an initial time of the state and thus a preparation time of
the physical system represented by the state. This special time is investigated in the context of
scattering theory, where, in standard quantum mechanics, the physical meaning of a preparation
time has remained obscure. In an experiment, the preparation time corresponds to an ensemble
of times of scattering marking the times in the laboratory when one scattering projectile interacts
with one target quantum.

1. Introduction
Standard quantum mechanics has time evolution for states (in the Schrödinger picture) or for
observables (in the Heisenberg picture) that extends from −∞ < t < ∞. It therefore makes
predictions for experimental (Born) probabilities also for −∞ < t < ∞. Such predictions are
not intuitive because, in an experiment, an observable can be measured in a system represented
by a state only after the system has been prepared at some finite time. There exists, however,
a causal quantum theory, which makes predictions of Born probabilities only for times t ≥ 0,
where t = 0 corresponds to the time at which the quantum system has been prepared [1].

To determine if the concept of a preparation time incorporates naturally into quantum
mechanical scattering theory, one must understand what this special time represents
phenomenologically. Section 2 is a brief motivation for a theory that addresses the preparation
time of physical systems. Section 3 is a discussion of the non-relativistic scattering cross section
and its relation to the preparation time. In Section 4, the preparation time of systems represented
by scattered states is identified for a scattering experiment.

2. Conjecturing an Arrow of Time
For simplicity, let us discuss systems represented by pure states described by a state vector
φ (or density operator ρ = |φ〉〈φ|.) Let the observable be represented by a vector ψ (or the
corresponding observable Λ = |ψ〉〈ψ|.) In the theory, the time evolution of these quantum
mechanical entities is given for states by the Schrödinger equation

i~
∂

∂t
φ = Hφ (1)

and for observables by the Heisenberg equation

i~
∂

∂t
ψ = −Hψ, or i~

∂

∂t
Λ(t) = [Λ(t),H]. (2)
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In standard quantum mechanics, one uses as a boundary condition for these dynamical equations
the Hilbert space axiom:

{φ} = {ψ} = Hilbert space = H. (3)

Then, by the Stone-von Neumann theorem [2, 3], the solutions of the dynamical equations (1)
or (2) are

φ(t) = e−
iHt
~ φ0 , −∞ < t <∞, (4)

for states, or
ψ(t) = e

iHt
~ ψ0 , −∞ < t <∞, (5)

for observables. This is time evolution given for states by the unitary group

U †(t) = e−
iHt
~ , −∞ < t <∞, (6)

and for observables by the unitary group

U(t) = e
iHt
~ , −∞ < t <∞. (7)

The group product is
U †(t1)U †(t2) = U †(t1 + t2). (8)

For every evolution U(t) there exists the inverse

U †(t)−1 = U †(−t). (9)

The unitary group evolution of states (or of observables) is symmetric in time; one can use
any value of the time parameter, −∞ < t < ∞, to drive the evolution of a state (or, in the
Heisenberg picture, of an observable) forward or backward.

A reversible time evolution for the physical systems represented by states is not intuitive
or observed, but the reversible time evolution (4) or (5) is generally accepted. In a quantum
mechanical experiment, the calculated, measurable quantity is (in the Schrödinger picture) the
probability to find the observable Λ = |ψ〉〈ψ| in the time-varying state φ(t). This quantity is
the Born probability:

Pφ(t)(Λ) = Tr
(
Λ|φ(t)〉〈φ(t)|) = Tr

(|ψ〉〈ψ|φ(t)〉〈φ(t)|) = |〈ψ|φ(t)〉|2. (10)

Note that the Born probability to find the observable Λ in the state φ(t) has time evolution
given by the state φ(t). Comparing (10) with (4) and (6), one finds

Pφ(t)(Λ) = |〈ψ|φ(t)〉|2 = |〈ψ|U †(t)φ0〉|2, −∞ < t <∞. (11)

Again, one can use any value between −∞ and ∞ for the time parameter. One has not only
reversible time evolution for states, but also reversible time evolution for the predictions of the
experimentally measured quantities.

Phenomenologically, however, one knows that a measurement cannot be made before an
experimental system has been prepared. In terms of the theoretical objects, an observable Λ
cannot be measured in the state φ(t) before the system represented by the state φ(t) has been
prepared at some finite time tprep > −∞. This is a statement of the preparation-registration
arrow of time, and it emphasizes the notion of a finite preparation time. In time symmetric
quantum mechanics, the theoretical predictions of experimental quantities (11) also hold for
times −∞ < t < tprep.
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A quantum theory providing asymmetric time evolution for states, which matches the
phenomenologically observed, asymmetric time evolution of physical systems, and having as
a feature the preparation time, has been obtained [1, 4]. By changing the boundary conditions
(3) for the dynamical equations of quantum mechanics,1 thus modifying slightly the axiom (3)
of standard quantum theory, one finds the time evolution to be [1, 8]

φ(t) = e−
iH×t
~ φ0 , 0 ≤ t <∞, (12)

for states or
ψ(t) = e

iHt
~ ψ0 , 0 ≤ t <∞, (13)

for observables.2 This is no longer time evolution given by the unitary group U †(t), but is rather
given by a semigroup,

U×(t) = e−
iH×t
~ , 0 ≤ t <∞, (14)

which is the time evolution operator for states, and by another semigroup,

U(t) = e
iHt
~ , 0 ≤ t <∞, (15)

which is the time evolution operator for observables.3 While the group product is still defined,

U×(t1)U×(t2) = U×(t1 + t2), (16)

being a semigroup means that the inverse, U×(t)−1, of an element, U×(t) with t > 0, does not
exist. Simply stated, one cannot evolve the state vector representing a physical system backward
in time. The Born probability is calculated for 0 ≤ t <∞ only:

Pφ(t)(Λ) = |〈ψ|φ(t)〉|2 = |〈ψ|U×(t)φ0〉|2, 0 ≤ t <∞. (17)

As will be discussed in the next section, one identifies the time t = 0 in (17) as the preparation
time of the physical system represented by the state vector φ(t). Therefore, one no longer has a
Born probability for finding an observable in a state before the system represented by that state
is prepared. With the time asymmetric quantum theory, calculations of experimental quantities
naturally incorporate the preparation time.

3. Scattering Experiments
The asymmetric time evolution provided by the semigroup operators (14) and (15) has been
called intrinsic time asymmetry [9, 4], to distinguish it from the extrinsic time asymmetry
investigated for open quantum systems [10, 11]. Because the Born probability (17) exists only
for time t ≥ 0, the time t = 0 is the time when an observable is just ready to be detected.
Because a system described by the state φ(t) must be prepared before an observable can be
detected in it, one identifies the time t = 0 as the preparation time of that microphysical system

1 Specifically, one differentiates mathematically between in-states, φ+, defined by a preparation apparatus
(accelerator), and out-observables, ψ−, defined by a registration apparatus (detector) [5, 6]. The sets of
energy wave functions for in-states and out-observables are chosen to be {〈+E|φ+〉} = (H2

− ∩ S)|R+ and
{〈−E|ψ−〉} = (H2

+ ∩ S)|R+ , respectively, where H2
∓ are the Hardy function spaces, and S is the Schwartz space

[7].
2 Technically, the time in (12) or (13) is limited from below by some finite time t̃: t ≥ t̃ > −∞. Let us choose
t̃ = 0.
3 The operator notation A× signifies that the operator is an extension of a Hilbert space selfadjoint operator
A = A† onto the space dual to the space of vectors describing states and observables.
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described by the state φ(t). At its moment of preparation, the system is represented by the
state vector at t = 0: φ(t = 0).

For a scattering experiment, one has a detector, represented by the observable Λ = |ψ−〉〈ψ−|,
which is built to detect that observable of a scattered, microphysical system represented by a
scattered state called φ+(t). The experimentally observable quantity is the differential cross
section, which is calculated as

dσ(θ, ϑ) =

(
transition probability per unit time
for scattering quanta into ∆Ω

) ∣∣∣
t=0(

incident probability per
unit time and unit area

) . (18)

Here, ∆Ω is the solid angle subtended by the detector.
One calculates the transition probability rate in (18) at the time t = 0 [12]. The transition

probability is given, according to (17), by

Pφ+(t)

(|ψ−〉〈ψ−|) = |〈ψ−|φ+(t)〉|2, 0 ≤ t <∞. (19)

If one is to identify the time t = 0 in (18) as the semigroup time t = 0 in (19), as seems
natural, then the transition probability rate in (18) is calculated precisely at the initial time
of a scattered state, which coincides with the preparation time of a scattered, microphysical
system. The initial time of a scattered state is therefore the time of scattering of the system it
represents.

A consequence of the existence of a preparation time is the necessary, theoretical distinction
between the time associated with a state φ+(t) and the time associated with any external state
or reservoir with which φ+(t) might interact. The time t = 0 is the semigroup time of (14),
which is associated with a particular state, and it is independent of the time parameterizing
the evolution of any external state. For the purpose of discussion, take the external state for a
scattering experiment to be the laboratory. Even in the non-relativistic case, one distinguishes
between the microscopic time t of φ+(t) and the macroscopic time marked by the clocks on the
wall of the laboratory, tlab. It is only the microscopic time, belonging to the state φ+(t) (or, in
the Heisenberg picture, to the observable ψ−(t)) that is bounded by t ≥ 0.

4. Ensemble of Times
Consider the theoretical description of a scattering experiment [13, 14]. The controlled in-state
vector, called φin(t), represents the incoming, projectile system prepared, up to phase, by an
accelerator. The uncontrolled out-state vector, φ+(t), represents a microphysical, scattered
system, and it is defined by the controlled in-state as well as by the scattering interaction. This
microphysical, scattered system is prepared at the time of scattering, which is the time of beam
crossing.4 Typical scattering experiments consist of multiple beam crossings occurring over a
span of days or years, as counted by the macroscopic time of the lab.

On the microphysical level, the uncontrolled out-state represents a scattered system with
characteristics specified by the vector φ+(t). One does not distinguish between two instances
of that state (two different microphysical systems), prepared in an experiment, if the only
difference between them is the macroscopic laboratory time, tlab, of scattering. In other words,
if a scattered, microphysical system is prepared during a beam crossing today, it is considered
phenomenologically identical to one prepared during an identical beam crossing yesterday. These

4 “time of beam crossing” here refers to the moment a single bunch of projectile particles arrives at the target
(fixed-target experiment) or to the moment when a bunch of projectiles moving one direction crosses a bunch
moving in the opposite direction (collider experiment).
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separate yet phenomenologically identical instances of the state (microphysical systems) are all
represented by φ+(t).

Furthermore, every state |φ+(t1)〉 evolves over time into a unique state |φ+(t2)〉:

|φ+(t2)〉 = U×(t2 − t1)|φ+(t1)〉, t2 > t1. (20)

One can choose to describe two different instances of the state φ+(t) by two different vectors φ+
a

and φ+
b . However, if one wishes the two microphysical systems, and thus the two vectors, to be

equivalent at some later time tmeas when a measurement is to be made, then by the linearity of
the unitary time operators (14)

|φ+
a (tmeas)〉 − |φ+

b (tmeas)〉 = 0 = U×(tmeas)|φ+
a 〉 − U×(tmeas)|φ+

b 〉
= U×(tmeas)

(|φ+
a 〉 − |φ+

b 〉
)
. (21)

Therefore, |φ+
a 〉 = |φ+

b 〉, and the two different scattering systems are in fact represented by the
same state.5 It follows that the state φ+(t) represents an ensemble of microphysical, scattered
systems.

The ensemble of systems contains members prepared during various beam crossings at various
macroscopic times in the lab. One is free to consider the macroscopic time in the lab at which
a given member of the ensemble was prepared, or scattered. This macroscopic time would
correspond to a specific time of beam crossing, and to the ensemble of microphysical systems
would belong an ensemble of macrophysical times of scattering. On the microphysical level,
however, every member of the ensemble represented by φ+(t) is prepared at the microphysical
time t = 0.

In the non-relativistic case, one can relate the microscopic and macroscopic times quite easily.
Let ti denote the macroscopic time corresponding to the i-th member of the ensemble. Then ti0
would be the macroscopic time of the preparation of the i-th member of the ensemble. One can
write

t = ti − ti0. (22)

The microphysical time is t. The ensemble of macroscopic preparation times is {t0}.
Physicists preparing data from a scattering experiment are aware of the ensemble, which is an

intuitive notion. Experimental results are gathered from an ensemble of events occurring over a
period of days or years. Of course, quantum mechanical calculations result in probabilities, and
they do not address individual microphysical systems, which are particular instances of a state.
The individual times within the ensemble {t0} are not reproducible.

5. Conclusion
The time asymmetric theory of quantum mechanics includes the theoretical notion of a special
time, t = 0, corresponding to the preparation time of a system represented by a state. This time
incorporates naturally into the description of scattering experiments. Its existence emphasizes
the theoretical difference between time belonging to a scattered state, φ+(t), and the time
belonging to the state of an external system such as the laboratory. Phenomenologically, the
preparation time corresponds to an ensemble of macroscopic times of scattering marking the time
in the laboratory when one interaction event between one projectile and one target quantum
occurs.
5 If the microphysical system represented by φ+

a is prepared, say, at a microphysical time ∆t later than the system
represented by φ+

b is prepared, the same argument gives |φ+
a 〉 = U×(∆t)|φ+

b 〉, and the same conclusion follows.
Note that this microphysical (though finite) time ∆t is independent of the macroscopic times in the lab at which
the systems represented by φ+

a and φ+
b were prepared.
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