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Abstract. The analysis of gene expression allow to study the functions of genes and their
roles in different processes in the cell of a living system, including the cell cycle. Clustering is
widely used in the analysis of high-throughput gene expression data to find patterns of similarity
that enable related gene groups and functions to be identified. Clustering algorithms are very
sensitive to the choice of initial conditions and optimal number of clusters. In this paper, we
investigate the impact of metrics and cluster parametrisation for three clustering models and
propose a method for optimisation of cluster parameters based on cluster compactness and
separation. A case study presents the analysis of gene expression data for E.coli bacteria.

1. Introduction
The world of biological sciences has undergone an information revolution in recent years
due to the development of rapid DNA sequencing techniques, the progress in computer
based technologies and mathematical and computer modelling. The development of DNA
microarray technology has made it possible to measure the expression levels of thousand of
genes simultaneously under controlled experimental conditions. The completion of the genome
sequence for human and many model organisms has provided powerful biological data of richness
and scale that require a data driven approach. Moreover, the atomic description of molecular
structure and functions, as well as molecular explanation of cellular behaviour, have become
increasingly possible. The growing amount of detailed information about biological systems and
the complexity of these systems is a challenge that needs modelling and computational tools,
adaptable to large data sets, and an integrative modelling approach [1, 2].

The central dogma of molecular biology is that the information is stored in DNA, transcribed
to messenger RNA (mRNA) and then translated into proteins (see for example [1]), i.e. once the
gene has been activated it is expressed in the cell. This justifies the premise that the information
about the functional state of an organism is to a great extent determined by the information on
gene expression and is the motivation for the analysis of large-scale gene expression data. Among
many powerful automatic techniques for analysing high-throughput gene expression data from
microarray experiments, clustering is widely used [2, 3]. It is accomplished by finding similarity
patterns within gene expression data thus enabling related gene groups and functions to be
identified. Clustering results are used to learn about gene functions, gene regulation, cellular
processes and subtypes of cells. The genes with similar expression patterns, known as co-
expressed genes, can be clustered together. Co-expressed genes are likely to have similar cellular
functions, or to be involved in the same cellular processes [4, 5, 6, 7]. Further, the regulatory
modules of biological function of unknown genes can be discovered by associating them with
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other genes that have similar expression patterns and known regulatory elements or functions.
However, most clustering algorithms are very sensitive to the initial choice of parameters and
optimal selection of clusters.

In this paper, we investigate the impact of metrics and cluster parametrisation for three
clustering models and propose a method for optimisation of cluster parameters based on cluster
compactness, separation and stability. A case study for bacteria is used to illustrate the main
concepts and results. The rest of the paper is organised as follows. In Section 2 we consider
the effect of similarity metrics and compare the optimisation criteria in three clustering models,
K-means, EM and minimal entropy models . In Section 3 we discuss the quality and stability
of the clusters and propose a method for optimisation of cluster parameters. In Section 4 the
analysis of clustering results for genome-wide expresion of Escherichia coli (E.coli) bacteria is
presented, the discussion and conclusions are given in Section 5.

2. Effect of similarity metrics in clustering models
Clustering models are very popular in the analysis of high-throughput gene expression data from
microarray experiments [2, 3]. Clustering is the exploratory, unsupervised process of grouping
data objects into a set of disjoint classes, called clusters, so that objects within one class have
high similarity to each other and are dissimilar to objects in another class [8].

Microarray gene expression data can be presented by a real value gene expression matrix,

M = {wij |1 ≤ i ≤ n, 1 ≤ j ≤ m} (1)

where the rows G = {g1, g2, ..., gn} form the expression patterns of the genes, the columns
S = {s1, s2, ..., sm} represent the expression profiles of the samples (experiments), and each
cell of the expression matrix, wij , is the measured expression level of gene i in sample j,
i = 1, 2, ...n, j = 1, 2, ..., m. In what follows, the vector r indicates a gene expression data object,
which can represent a gene gi in the n-dimensional gene space or a sample sj expression profile in
the m-dimensional array space. The similarity pattern can be established by comparing genes or
experimental conditions (samples). The original gene expression matrix contains noise, missing
values, and systematic variations arising from the experimental procedure. In most cases, data
preparation and normalization is necessary before any data analysis can be performed.

The choice of similarity measure used within the clustering algorithm is very important as it
influences the output and interpretation of the results. It has received much discussion [2, 3, 9]
but there is still no agreement over the best metric to use and little work has been done on
assessing the impact of different measures in the analysis of gene expression [10, 11].

The similarity is defined as a function, Sim, that measures association, usually distance or
correlation, between data objects, representing genes or samples in the expression matrix. The
distance measures the proximity between data objects ri and rj and represents the dissimilarity
or unlikeness between them. A typical distance metric is the Euclidean distance,

D(ri, rj) =

√√√√
m∑

d=1

(wid − wjd)2, i, j = 1, 2, ..., n (2)

Other distance measures used in this work are Manhattan and Minkowski distance.
The correlation measures the similarity or alikeness between two objects ri and rj . It is

different from the distance as a measure of the relationship between gene expression profiles. A
typical correlation function is the Pearson correlation coefficient,

P (ri, rj) =
∑m

d=1(wid − µi)(wjd − µj)√∑m
d=1(wid − µi)2

√∑m
d=1(wjd − µj)2

(3)
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where µi and µj are the means for the objects ri and rj respectively. The correlation coefficient
takes a value between −1 and +1. For example, a value of 0 represents perfectly uncorrelated
variables, values close to ±1 represents strong positive (negative) correlation between genes and
could point to association of their functions. Cosine correlation coefficient is another example of
correlation function. The correlation metric can be converted to a distance memetric [3]. Other
examples of similarity metrics, are Jaccard and dice similarities, which take values between 0
and 1. We have investigated the impact of generalised similarity metrics using K-means, EM
and entropy based models.

2.1. K-means model
K-means is an iterative partitioning method in which objects are moved among a pre-specified
number of clusters, K, until an optimal solution is reached. It is an example of hard clustering
algorithm in which each gene is assigned to a single cluster. The basic K-means clustering
algorithm can be summarised with the following steps (see for example [8]): the number of
clusters K is specified; the initial values for the cluster centres are chosen; each data object
r is assigned to a cluster Ci, i = 1, ..., K, using the selected Sim function; the cluster centres
mi, i = 1, ..., K, are re-calculated using the mean of all objects in each cluster; the objects are
re-assigned; the last two steps are repeated until the cluster membership is stable.

The algorithm minimises a global error criterion, known as cost function [2], which depends
on the preliminary selection of number of cluster K, cluster centres mi and similarity function
Sim. Although there is no universally accepted definition and the cost function could be tailored
to the problem, it is usually defined as ”within-cluster” sum of the squared distances between
each data object r belonging to the cluster Ci and its cluster centre mi ,

CF2 =
K∑

i=1

∑

r∈Ci

| r − mi |2 (4)

and represents the total error. It is well-known that the algorithm minimises CF2 but converges
to a local rather than a global minimum depending on the choice of initial parameters, such
as number of clusters K and cluster centres. Thus, the automatic selection of an optimal
number of clusters for the clustering algorithm is a complex task and is a common problem
for all partitioning algorithms. An optimisation procedure of these parameters is discussed in
Section 3.

The impact of similarity measures has been investigated using microarray data for E.coli
gene expression. The case study is considered in more details in Section 4. Here we present a
summary of the metric’s analysis for a reduced data set of 264 genes.

The data set was analysed using seven different metrics such as distance: Euclidean(E),
Manhattan (Mh), Minkowski (Mk), correlation: Cosine(C), Pearson correlation coefficients (P)
and other similarity: Dice (D) and Jaccard (J). The results are given in Table 1. The table
compares the cluster sizes (number of genes per cluster) for different metrics and values of K.
The similarity metric is indicated in the first column, the first row gives the number of clusters
K = 4, 5, 6, 7. The size of each cluster for each value of K is given in the remaining columns for
each similarity measure. The table shows that the clustering results are dependent on both, the
choice of similarity measure and the value of K. Whilst the cluster sizes naturally decrease as K
increases, there is some evidence of stability between the small clusters which tend, in the case
of this data set, to contain the most highly expressed genes. The table illustrates the difference,
for each value of K, between cluster sizes obtained using distance, correlation or other metrics.
However, the results are similar for the three distance measures E, Mh and Mk, same applies
for the correlation metrics C and P, and other similarity metrics D and J.
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Table 1. Comparison of cluster sizes for different similarity metrics

Number of clusters 4 5 6 7
Metric

E 247,9,4,4 159,89,9,4,3 160,87,9,4,3,1 92,84,71,9,4,3,1
Mh 247,9,4,4 158,90,9,4,3 158,89,8,5,3,1 93,91,63,9,4,3,1
Mk 160,88,13,3 160,88,9,4,3 160,87,8,5,3,1 160,87,7,4,3,2,1
D 159,88,13,4 157,90,10,4,3 91,87,69,10,4,3 96,76,71,7,6,5,3
J 159,88,13,4 157,90,10,4,3 156,86,8,6,5,3 94,75,71,7,7,6,4
C 98,96,59,11 117,69,51,17,10 101,67,50,19,17,10 98,57,40,31,23,8,7
P 87,81,67,29 110,61,38,29,26 88,61,56,28,2,8,3 83,53,43,38,28,16,3

2.2. EM model
In the probabilistic models, data is assumed to be drawn from a series of probability distributions,
usually multivariate Gaussian distributions. These models use the Expectation-Maximization
(EM) algorithm [12] to produce the best fit between the data and a series of Gaussian
distributions. The EM algorithm uses the likelihood as a similarity measure instead of distance
or correlation. The algorithm takes into account that each object can belong to each cluster
with a certain probability and finds the maximal log-likelihood. The log-likelihood is given by

L =
n∑

i=1

log(
K∑

k=1

λkpk(ri|Mk)) (5)

where λk is the probability that data object ri belongs to cluster Ck, λk ≥ 0,
∑

k λk = 1,
each cluster Ck is represented by a model Mk, p(ri|Mk) is the probability density of ri in
Mk, k = 1, ..., K and K is the number of clusters. Each model Mk can be represented by a
multivariate d-dimensional Gaussian distribution with mean µk and covariance Σk. The EM
algorithm finds the maximal log-likelihood LM for a given data model M{M1, ..., MK}.

It can be shown that when the cost function corresponds to an underlying probabilistic model,
K-means can be regarded as an approximation of the classical EM algorithm on a spherical
Gaussian mixture model [2]. Like K-means, the EM algorithm requires the number of clusters
to be specified in advance.

2.3. Minimal entropy model
The entropy-based models use the entropy of the clusters as a similarity metric. The entropy
measures the uncertainty of a random variable. In Shannon’s information theory [13], the
entropy of a random variable X is defined as

H(X) = −
∑

i

p(ri)log(p(ri)) (6)

In thermodynamics, the entropy is a measure of the disorder in the system. Applied to clustering,
the concept of entropy means that each cluster should have a low entropy as objects in the same
cluster are similar. Thus, the search for clusters with minimal entropy can be used as a clustering
criterium.

The entropy of the clusters can be written as,

H =
K∑

j=1

pjH(X|Cj) (7)
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where H(X|Cj) is the entropy of the cluster Cj , pj is the probability of the cluster Cj such
that

∑
j pj = 1 and K is the number of clusters. A clustering algorithm that minimises (7) has

been developed in [14]. The entropy of the cluster H(X|Cj) can be measured using the actual
relationship between data objects and clusters. Li et al [14] have evaluated this relationship
by using posteriori probabilities p(Cj |ri) of object ri in cluster Cj . However, the choice of
particular data distribution (such as Gaussian distribution) can lead to a poor representation of
the data. An alternative method is based on the actual density of data objects using the Parzen
density approach [15]. The probability p(Cj |ri) is evaluated using the Parzen density estimation
for the clustering problem as [14],

p(Cj |ri) =
nij

ni
(8)

where nij is the number of samples ri from cluster Cj and ni is the number of all samples located
in a selected region R(ri). The entropy clustering criterion can be written as

H = −
n∑

i=1

K∑

j=1

nij

ni
log(

nij

ni
). (9)

The algorithm minimises (9) to find the minimal entropy of the clusters. Like the other clustering
functions discussed in the paper, H has local minima rather then a global minimum. We have
used (9) with K-means and EM to optimise and improve the clustering results.

3. Quality, stability and optimisation of clusters
Clustering algorithms, like K-means, EM and minimal entropy, require the number of clusters to
be given in advance. This is often very difficult as biologists may not know the exact number of
functional categories as some of the genes may have unknown functions or belong to groups with
unknown functional categories. The optimal selection of the number of clusters in the clustering
algorithm and the stability of the clusters is important as it impacts upon the clustering solution
(see Table 1). A good clustering result should produce tightly packed clusters which are stable
and well separated [2, 9].

3.1. Quality of clusters
The quality of the clusters can be measured in terms of ”intra cluster” homogeneity and ”inter
cluster” separateness. The term homogeneity [9] is used to represent the sameness of data points
within a cluster. The corresponding function can be defined as,

Hom(Ci) =
1

‖Ci‖
∑

r∈Ci

Sim(r,mi) (10)

where ‖Ci‖ is the number of points allocated to cluster Ci and Sim is the similarity function.
To illustrate these ideas in K-means, we have chosen Sim as Euclidean distance (2). The term
separateness is used to estimate the separability between clusters and can be measured by the
function,

S(Ci, Cj) = Sim(mi, mj), i 6= j, (11)

giving the distance between two cluster centres.
The average cluster homogeneity measures the ”intra cluster” sameness and represents the

average distance between each data object and its cluster centre. The average cluster separation
measures ”inter cluster” separateness and gives the average (weighted) distance between cluster
centres. When considered in terms of distance between objects, our aim is to find solutions
based around compact, well separated clusters, with low homogeneity (high density of packing)
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and high separation. Based on these concepts, we evaluate the quality of the clusters by defining
two cost functions and two quality functions.

The error function CF1 is the sum of distances between each data object and its cluster
centre,

CF1 =
K∑

i=1

∑

r∈Ci

| r − mi | (12)

It represents the mean error per data point and measures average cluster homogeneity. The cost
function CF2 (4) is the sum of squared distances between each data point and its cluster centre.
The quality function QF1 is the difference between the mean distance between cluster centres
and the mean error per data point,

QF1 =
1

K(K − 1)

∑

i,j,i6=j

| mi − mj | −CF1

n
(13)

It represents the balance between cluster separateness and cluster compactness. QF2 is the
difference between the mean cluster separation and the mean error per data point,

QF2 =
1∑

i,j,i6=j ‖Ci‖‖Cj‖
∑

i,j,i6=j

‖Ci‖‖Cj‖S(Ci, Cj)− CF1

n
. (14)

We have optimised the number of clusters within K-means using the functions CFi, QFi, i = 1, 2.
A low cost, high density and high separation solution corresponds to a minimum of CFi and a
maximum of QFi, i = 1, 2, for the same values of the parameters.

Figure 1 represents the cost functions CF1 and CF2 plotted against the number of clusters,
K, for the reduced set of 264 genes. The quality functions QF1 and QF2 are given on Figure 2.
The functions CF1 and CF2 do not exhibit a global minimum but a series of local minima with
respect to K. The function QF2, however, has a global maximum. Thus, the optimal solution
corresponds to a local minimum of CF2 and a global maximum of QF1, which for the set of 264
genes is at K = 6.

0

100

150

200

250

2 4 6 8 10 12 14 16 18 20

Number of clusters

CF1 CF2

CF1, CF2

50

Figure 1. Cost functions CF1, CF2 vs
number of clusters.

QF1, QF2

0

1

2

3

4

5

2 4 6 8 10 12 14 16 18 20
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QF1 QF2

Figure 2. Quality functions QF1, QF2 vs
number of clusters.

Smet et al [16] have used an alternative quality based approach in which clusters are defined
sequentially and can only contain genes lying within a specified volume. Other approaches to
the optimisation are associated with the statistics of the data [17].
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We have analysed the results of the EM model using the Bayesian Information Criterion,
BIC (see for example [18] and references therein),

BIC = 2LM −mM log(n) (15)

where LM is the maximised mixture log likelihood (5) for the data model M , mM is the number
of independent parameters to be estimated and n is the number of data objects. BIC has been
used in [18] to estimate the optimal number of components within a mixture model. Whilst the
maximised log likelihood will increase as the number of components increases, the second term
in (15), which is based on the number of parameters, compensates this increase. Equation (15)
can be considered as an alternative of the cluster balance (13). We have used (15) to search
for optimal solution in EM with maximised log likelihood and maximal BIC. Figure 3 presents
BIC as a function of the number of clusters for the set of 264 genes. The optimal solution is at
K = 5 where BIC has a global maximum.

We have estimated the entropy of the clusters in K-means and EM-model using the criterium
(9). An illustration for the set of 264 genes in K-means is given on Figure 4. We have combined
the intra cluster sameness CF2 and the minimal entropy H to identify the optimal solution. It
corresponds to a global minimum of the function CF2 + H, which for the set of 264 genes is at
K = 7.
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Figure 3. BIC vs number of clusters.
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Figure 4. Cost function CF2 and entropy H
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3.2. Stability of clusters
The Rand index is a useful way of comparing different clustering results from a given dataset.
Given a set of data objects G = {r1, r2, ..., rn} and two different clustering solutions C1 =
{C1

1 , C1
2 , ..., C1

K} and C2 = {C2
1 , C2

2 , ..., C2
P },K 6=P , the Rand index, R, can be defined as,

R =
a + b

a + b + c + d
, (16)

where a is the number of pairs of data objects in G that are in the same cluster in both C1 and
C2, b is the number of data objects in G that are not in the same cluster in both C1 and C2,
c is the number of data objects in G that are in the same cluster in C1 but not in the same
cluster in C2 and d is the number of pairs of data objects in G that are not in the same cluster
in C1 but are in the same cluster in C2. R has a value between 0 and 1 with 0 indicating that

V International Symposium on Quantum Theory and Symmetries IOP Publishing
Journal of Physics: Conference Series 128 (2008) 012030 doi:10.1088/1742-6596/128/1/012030

7



the two clustering solutions do not agree on any pair of data objects and 1 indicating that the
two solutions are identical.

Rand index was used to compare different solutions in one model obtained by varying the
number of clusters, a reliable solution would be expected to exhibit some level of stability
as the number of clusters is varied. We have also used Rand index calculations to compare
the effect of similarity metrics. For the set of 264 genes, the optimal results in K-means
are for six clusters. Rand index calculations confirm that distance metrics lead to similar
clustering results, R(E/Mh)=0.99, R(E/Mk)=0.99, R(Mh/Mk)=0.97. For correlation metrics,
R(P/C)=0.79, R(J/D)=0.74,R(P/D)=0.73; R(P/E)=0.7 indicates some difference in clustering
results when Pearson coefficient or Euclidean distance is used as metric (see also Table 1).

Rand index calculations were used to compare results from K-means and EM model. 6
clusters in both K-means (Euclidean metric) and EM give R=0.67, 6 clusters in K-means and
8 clusters in EM give R=0.65. The relatively low value of R indicates that the two models
produce to an extent different results, one of the reason being that cluster sizes are different.
Table 2 gives the number of genes per cluster in K-means and EM for a solution with 6 clusters
for set of 264 genes.

Table 2. Comparison of cluster sizes in K-means and EM
Cluster 1 2 3 4 5 6
Model
K-means 160 87 9 4 3 1
EM 67 54 47 43 35 18

A stability based method is developed in [19] by measuring the overlap between clusters as
the number of clusters is varied. The optimal number of clusters is determined by selecting the
solution with the highest stability. The method is applied to a set of clustering results with the
number of clusters varying from 2 to m. Let Cc,l be a set of data objects in cluster l resulting
from a clustering solution with c clusters, 2 < c < m. Let k, 0 < k < m− c, be the threshold at
which the stability calculation will stop. The cluster stability [19] of cluster l is,

Sc,l = Minc+k
i=c+l{Maxi

j=1{
‖Cc,j

⋂
Ci,j‖

‖Cc,l‖ }}. (17)

Equation (17) calculates the values of k for the maximum number of overlapping objects between
cluster l and all other clusters in the clustering solution c, c < i < c + k. Then it takes the
minimum of the k maximum values as the stability of the cluster l. The stability value is
normalised to range from 0 to 1 by dividing it with the number of objects in cluster l. The
average stability of all clusters in this solution is,

< Sc >=
1
c

c∑

l=1

Sc,l (18)

We have used Rand index (16) together with equations (17) and (18) to evaluate the stability
of the clustering results in K-means and the EM model. The values of < Sc > for K-means and
EM models are given in Table 3 for K = 4, .., 7 for the set of 264 genes. The table indicates
that the most stable solution is obtained for 6 clusters. Alternative approaches to the stability
of the clustering results are investigated in [20, 21].
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Table 3. Average cluster stability for K-means and EM models

Number of clusters 4 5 6 7
Model

K-means 0.8484 0.9288 0.9203 0.8968
EM 0.8081 0.9057 0.9471 0.9340

4. Case study: E.coli
Ferenc et al [22] have studied the effects of knocking out the methionine repressor gene, metJ ,
on the E.coli transcriptome. Genome-wide expression data has been obtained where strains
of LU106(pFM26) and LU106(pFM20) have been compared using oligonucleotide based array
of 4288 E.coli genes. The study has confirmed that repression is largely restricted to known
genes involved in the biosynthesis and uptake of methionine. The number of additional genes
that are up-regulated in the absence of the repressor has been identified. Several other recently
characterised genes in the methionine regulon have been identified and previously unknown
potentially regulated loci highlighted.

We have used raw data from these experiments, normalised to eliminate background noise
and systematic error. The E.coli genes have been clustered by hierarchical clustering (with
GeneSpring [23]), K-means, EM algorithm and entropy-based algorithms. Data was filtered to
select differentially expressed genes and a subset of 265 genes was obtained and analysed. In this
subset, metE gene has the highest expression level and always forms a cluster by itself. This
is due to the biological setting of the experiments. The reduced set of the remaining 264 genes
is used in the paper to illustrate the results. The genes in the reduced data set were clustered
using different clustering models. For comparison, genes in the complete set were also clustered.

The clustering was performed using our Java-based clustering tool with embedded entropy
algorithm to refine the results of K-means and EM algorithms. K-means was executed multiple
times with K = 1, ..., 20 with a random starting values for selecting the cluster centres. EM-
algorithm was executed in a similar way with a number of Gaussians varying from 2 to 10.
For each clustering model, the quality and stability of the clusters were examined and optimal
solution was chosen based on the criteria described in Section 3. The entropy-based algorithm
was executed with K-means and EM to provide a refined set of initial conditions. The solutions
of the different models were compared. The optimal solution in K-means was chosen with
6 clusters for the 264 genes. The data was analysed with seven different similarity metrics.
Although different metrics can lead to different clustering patterns (as illustrated by Rand
index calculations and Table 1), we have established that a number of highly expressed genes are
always clustered together. Table 4 shows highly expressed genes consistently clustered together
in K-means with different similarity metrics. The genes with the highest expression levels are
presented in the first column of the table, distance metrics are given in the second column, other
similarity metrics in third column and correlation metrics in the last column. If the genes in the
given row belong to the same cluster for the corresponding group of metrics, this is indicated
by ”yes”, otherwise by ”no”.

K-means clusters of the 20 genes with the highest expression level are given in Table 5.
Euclidean distance is used as a metric. Each row gives the genes belonging to the same cluster.
genes lit and b1240 are clustered together if K=5 but split when K=6. The optimal solution in
EM model for the 264 genes showed that genes with the highest expression level are distributed
in 3 clusters (Table 6). The refinement with the minimal entropy algorithm showed that the two
genes lit and bi240 split in a separate cluster. Genes metI and metN , grouped in the same EM
cluster, are also clustered together in K-means when Pearson correlation coefficients are used
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Table 4. Highly expressed genes consistently clustered together
Genes E, Mh, Mk D, J C, P
yaeS,metI yes yes yes
metA, metR yes yes yes
narV, yaeO yes no no
metK,metF, b0539, yi821 yes no no
polB, ydcN,metN, prpD yes yes no
folE,metK no no yes
lit, b1240 no no yes
metF,metN yes yes yes
polB, prpD yes yes yes

Table 5. K-means clusters of genes with the highest expression levels
metE
metA, metR
narV, yaeO
metI, metB, yeaS, folB

metF, metK, metN, cspA, polB, ydcN, prpD, b0539, yi821

b1240
lit

as a metric. metE gene forms a cluster by itself in both models and is included in the tables for
completeness.

Table 6. EM clusters of genes with the highest expression levels
metE
metA, metR, narV
metI, metB, metF, metK, metN, folE, yeaS, cspA, polB, ydcN, prpD, b0539, yi821

lit, b1240
yaeO

Co-expressed genes in the same cluster could have similar functions or indicate co-regulation.
This has to be investigated further by using meaningful biological criteria. We have used a
consensus sequence to identify genes belonging to the met box and our results are in agreement
with the biological findings [22].

5. Conclusion and further work
Clustering techniques are used frequently in the analysis of gene expression data from microarray
experiments. The identification of co-expressed genes allows to infer the function of unknown
genes by comparing the co-regulated genes to the genes with known functions. Co-expressed
genes in the same cluster are probably involved in the same cellular process and strong expression
correlation between those genes indicates co-regulation.

However, clustering models are very sensitive to the choice of initial conditions and optimal
selection of clusters. In this paper we have investigated the impact of initial conditions in three
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clustering models, K-means, EM and entropy-based model. The effect of similarity metrics is
investigated in K-means. We have used cluster quality, stability and balance to optimise the
clustering solutions. The entropy of the clusters is explored for improvement of the clustering
results. We have clustered gene expression data of E.coli obtained in experiments investigat-
ing the effect of knocking out the methionine repressor gene. Work is in progress to compare
automatically clustering results with known gene functionalities using the Gene Ontology (GO)
and published literature. The visualisation of high dimensional gene expression data is an es-
sential part of the analysis as it facilitates the discovery of structures, features, patterns and
relationships, and enables human exploration and communication of the data. Our recently
published method for targeted projection [25] and the tool for exploration and visualisation of
high dimensional data [26] can be used to improve classifications of clustering results following
the requirements of the user.

Acknowledgements: The authors thank the Astbury Centre for Molecular Biology at Leeds
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