
Journal of Physics: Conference
Series

     

OPEN ACCESS

Generalized integrability and volume-preserving
diffeomorphisms
To cite this article: C Adam et al 2008 J. Phys.: Conf. Ser. 128 012025

 

View the article online for updates and enhancements.

You may also like
Bulk entanglement entropy and matrices
Sumit R Das, Anurag Kaushal, Gautam
Mandal et al.

-

Symmetries and exact solutions of the
BPS Skyrme model
C Adam, C D Fosco, J M Queiruga et al.

-

On the quantum structure of space-time,
gravity, and higher spin in matrix models
Harold C Steinacker

-

This content was downloaded from IP address 18.119.172.146 on 06/05/2024 at 16:23

https://doi.org/10.1088/1742-6596/128/1/012025
/article/10.1088/1751-8121/abafe4
/article/10.1088/1751-8113/46/13/135401
/article/10.1088/1751-8113/46/13/135401
/article/10.1088/1361-6382/ab857f
/article/10.1088/1361-6382/ab857f
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjssgqOLFXQQ4ypGl7ST-QhiGRI_6nsLPkDxy79_t-pYjb1Osk-UmOZA5qkKfpbgcarvCWgGJxxLRxZFsjghmO8W3TDoRHvIaX1jaP3G2aUJwjPpyGtRZ7wUzmiz5Q3hLtsBwrMWMwD7LlQszeTRGBDiorDlT01Oc0m5lb6Dz02Ou-WgEPxsnih3PMg-AwDbdJcrBn_0U-tvbmLZYXcJoL6nwxz857b4dqE5H_pgz77uu6uguPGErqqPwI3sq46wgPHv1z-PnxeA-QGGXVq3cyGN5WT-yvJcXOrrHtla2c_s-vlCgY3G59lekFKnT0ndH8ZHCORY4pccXhepxD9ywJALklOsvZg&sig=Cg0ArKJSzM_xvwTDokUn&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Generalized Integrability and Volume-preserving

Diffeomorphisms

C. Adam1, J. Sánchez-Guillén1 and A. Wereszczyński2
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Abstract. The concepts of generalized zero curvature conditions and integrability in higher
dimensions are briefly reviewed, where integrability in this context always means the existence
of infinitely many conservation laws. It turns out that the conservation laws provided by the
generalized integrability are, under certain additional assumptions, generated by the volume-
preserving diffeomorphisms on target space. The possible conservation laws for field theories
with a three-dimensional target space are classified. Further, an explicit example is discussed
in some detail.

1. Introduction
Non-linear field theories are important in many fields of physics, with applications ranging
from elementary particle theory to condensed matter physics. One feature of these theories
which adds to their relevance is the possibility for the existence of extended static (solitons)
or stationary (Q-balls) solutions. On the other hand, non-linear field theories are notoriously
difficult to analyse, where the degree of difficulty strongly depends on the dimension of the base
space (space-time) on which the fields are defined. In 1+1 dimensions, an ample mathematical
apparatus has been developed for the analysis of non-linear theories, among which there are the
inverse scattering method, Bäcklund transformations, or the zero curvature representation for
integrable systems, which generalizes the Lax pair representation of finite-dimensional integrable
systems. Integrability, that is, the existence of infinitely many conserved quantities, is related to
all of these methods, and seems to be crucial in the analytical treatment of nonlinear theories,
like, e.g., the explicit construction of solutions.

In higher dimensions, much less is known about non-linear field theories. A general concept of
integrability has not yet been developed there. One may have, however, theories which contain
an integrable subsector like, e.g., in the non-linear sigma model in 2+1 dimensions, where
the integrable subsector is formed by the holomorphic solitons of Belavin and Polyakov. One
generalization of the zero curvature representation of Shabat and Zakharov to higher dimensions
has been proposed in [1], and it was demonstrated there that this proposal leads to non-linear
field theories which have either infinitely many conservation laws in the full theory, or which
contain integrable subsectors, defined by some additional constraint equations on the fields, such
that the solutions belonging to this subsectors have infinitely many conservation laws. This zero
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curvature representation, therefore, realizes the concept of integrability in higher-dimensional
non-linear field theories in a specific and well-defined manner.

These methods have later been applied to specific models and to the analytic construction
of both static and time-dependent solutions. For models with infinitely many conservation laws
(the so-called AFZ model and related models), static and time-dependent solutions have been
constructed, e.g., in [2], [3], [4], [5], and in [6], [7], respectively. Solutions in integrable subsectors
of models which are, themselves, not integrable, have been constructed, e.g., in [8], [9]–[11] (the
Nicole model and versions thereof) and in [12], [13] (diverse models on base space S3). All these
models share the property that their target space has dimension two.

A wellknown nonlinear field theory with three-dimensional target space is the Skyrme model
[14] with target space SU(2) (or equivalently the three-sphere S3). Further, this model contains
an integrable subsector, and the simplest Skyrmion (i.e., the simplest soliton of the Skyrme
model with baryon number equal to one) belongs to this integrable subsector, see [16].

In many cases, it turns out that most of the new conserved currents in models and
their subsectors are Noether currents and generalizations thereof, i.e., they are related to
transformations of the target space variables (see [17]). So a direct, geometric approach has
been succesfully undertaken to find those currents, first for models with two-dimensional target
spaces, [18], [19], and later also for three-dimensional target spaces, [20].

It is the purpose of this paper to give a short overview of some of these recent results on
higher-dimensional integrability mentioned above, and to present some applications. Concretely,
in Section 2 we briefly review the generalized curvature condition which was proposed in Ref.
[1] as a possible way to generalize integrability to higher dimensions. In Section 3 we introduce
volume-preserving diffeomorphisms on target space. For the case of three-dimensional target
space we then classify for a wide class of Lagrangians all possible conservation laws, where
the conserved currents in all cases are Noether currents of the volume-preserving target space
diffeomorphisms. This section closely follows Ref. [20], but provides a slightly more refined
classification, which turns out to be useful for applications. In Section 4 we study as an explicit
example the abelian projection of Yang–Mills dilaton theory, which turns out to be integrable.
Here we closely follow the results of [21]. Section 5 contains a brief discussion.

2. Generalized zero curvature condition
Here we briefly review the proposal for generalized integrability of Ref. [1], to which we refer
for the details. The structure needed consists of a reducible Lie algebra G̃ which is a direct sum
of another Lie algebra G and an abelian ideal H,

G̃ = G ⊕ H (1)

together with a flat connection

Aµ ∈ G , ∂µAν − ∂νAµ + [Aµ, Aν ] = 0, (2)

and a covariantly constant vector field

Bµ ∈ H , ∂µBµ + [Aµ, Bµ] = 0 (3)

with
Aµ = Aa

µT a , Bµ = Bα
µPα , [Pα, P β ] = 0, (4)

where T a and Pα form a basis in G and H, respectively. Further, µ = 1 . . . d are base space
indices.

To gain some intuition, let us first remark that Eq. (2) is just a generalization to higher
dimensions of the zero curvature condition of Zakharov and Shabat in 1+1 dimensions. Further,
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Eq. 3 in some sense just generalizes the Lax pair L̇ = [L,M ] to higher dimensions. Another
important point is that Eqs. (2), (3) are not chosen arbitrarily but may, in fact be derived from
a generalized curvature condition as follows.

Firstly, the zero curvature condition Eq. (2) of Zakharov and Shabat may be derived as a
consequence of the path independence of the Wilson line (or parallel transport) operator

W = P exp
(∫ σ

0
dσ′Aµ

dxµ

dσ′

)
(5)

where P indicates the path ordering. In an analogous way, Eqs. (2), (3) may be derived from the
hypersurface independence of the following hypersurface ordered operator V in d dimensions,

V = P̃ exp

(∫
Σd−1

dσ1 . . . dσd−1W−1B̃µ1...µd−1
W

dxµ1

dσ1
. . .

dxµd−1

dσd−1

)
. (6)

Here the d − 1 form B̃ is the Hodge dual of the vector (one-form) of Eq. (3) (in fact, B̃ is
the more natural object from the point of view of generalized integrability). Further, Σd−1 is
a based, ordered, closed hypersurface with base point x0 ≡ x(σj = 0). P̃ is the hypersurface
ordering, which we shall explain a bit more in a moment.

The hypersurface independence of V , in turn, may be derived from the zero curvature
condition for a connection A in higher loop space Ωn(M,x0) where

Ωn(M,x0) = {γ : Sn → M,γ(0, . . . , 0) = x0} (7)

Explicitly, the connection A reads

A =
∫
Σd−1

dσ1 . . . dσd−2W−1B̃µ1...µd−1
W

dxµ1

dσ1
. . .

dxµd−2

dσd−2
δxµd−1 (8)

where δxµd−1 is the differential on higher loop space which provides an arbitrary infinitesimal
variation of the higher loop. A closed ordered based hypersurface Σd−1 may be interpreted as
a closed loop in loop space Ωd−2, and this observation allows to understand the hypersurface
ordering. It is just ordinary path ordering of the corresponding ordinary loop in higher loop
space Ωd−2.

We want to emphasize that the conditions Eqs. (2), (3) are sufficient, local conditions for the
zero curvature condition on the connection A of Eq. (8), but certainly they are not the most
general ones.

After this brief review of the generalized zero curvature condition, we assume that Eqs. (2),
(3) hold and make the following additional simplifying assumptions that

• G is a semisimple Lie algebra (e.g. su(2)) with

[T a, T b] = fab
c T c (9)

a structure constants fab
c .

• H is a (in general, reducible) representation space of G:

[T a, Pα] = Rαβ(T a)P β (10)

• Aµ is explicitly flat:
Aµ = g−1∂µg , g ∈ G (11)

(where e.g. G = SU(2)) such that only Eq. (3) provides a nontrivial condition (DµBµ = 0).
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• Under these conditions, the currents

Jµ = gBµg−1 (12)

are automatically conserved, ∂µJµ = 0, and therefore the number of the conserved currents
equals the dimension of the representation space H, dim H. If dim H = ∞, then we say
that the corresponding field theory is integrable.

In general, the conserved currents of an integrable theory may be either Noether currents
or may be related to hidden symmetries. Under the assumptions Eq. (9) - (12), however, the
currents Jµ turn out to be Noether currents of geometric target space transformations, where
the target space is spanned by the parameters of g ∈ G.

A first example for this structure is like follows.

• The Lie group G is SU(2) where, however, its elements g ∈ G are restricted to the equator
of SU(2) such that the target space is two-dimensional.

• The representation space H is the space of representations of SU(2) with arbitrary integer
angular momentum quantum number l, but magnetic qunatum number m restricted to ±1,

H = {reps Rlm of SU(2), m = ±1, l = 1, . . . ,∞} (13)

• Then the conserved currents Jµ of Eq. (12) turn out to generate area preserving
diffeomorphisms on the two-dimensional target space (which may be, e.g., the two-sphere
S2, but this depends on the Lagrangian).

A detailed discussion of this case may be found in [17], or in [18], [19].
Another class of theories with three-dimensional target spaces is obtained when the group

element g is assumed to take values in the full unrestricted group SU(2). There it turns out
that the resulting conservation laws are generated by some subsets of the generators of volume-
preserving diffeomorphisms on that target space. This case is discussed in the next section,
where also a classification of the conservation laws of these theories is given. More details may
be found in Ref. [20]

3. Conservation laws for Skyrme-type models
3.1. Volume-preserving diffeomorphisms
Let us start with a three-dimensional manifold (later to be identified with target space) with
local coordinates Xi and with a volume form which in local coordinates reads

dV = h(Xi)dX1 ∧ dX2 ∧ dX3 (14)

where h is the volume density. Further, a diffeomorphism is an infinitesimal transformation

Xi → Xi + εY i(Xj), (15)

where ε is infinitesimal, and the Y i are arbitrary functions of the Xj . A volume-preserving
diffeomorphism has to obey

∂i(hY i) ≡ ∂

∂X i
(hY i) = 0, (16)

in addition. The corresponding vector fields

v(Y ) = Y i∂i (17)

form a closed Lie algebra, that is

[v(Y ), v(Ỹ )] = v( ˜̃Y ) (18)
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such that
˜̃Y

i
= (∂jY

i)Ỹ j − (∂j Ỹ
i)Y j , ∂i(h

˜̃Y
i
) = 0 (19)

is again a volume-preserving diffeomorphism. For later convenience we change coordinates
according to

u ≡ X1 + iX2 , ξ ≡ X3

Y u ≡ Y 1 + iY 2 , Y ξ ≡ Y 3. (20)

These new coordinates are especially useful for a parametrization of g ∈ SU(2),

g = exp(iξ~n · ~σ) = cos ξ + i sin ξ ~n · ~σ (21)

provided that we also replace the unit vector field ~n by a complex field u via stereographic
projection

~n → u =
n1 + in2

1 + n3
. (22)

Further, we assume from now on the following form of the volume density h = h(uū, ξ) for
simplicity. Finally, we interpret u, ξ as target space variables of a Lagrangian field theory
with general Lagrangian L(u, ū, ξ, uµ, ūµ, ξµ), where uµ ≡ ∂µu, etc., then the Noether currents
corresponding to the vector fields v(Y ) generating volume-preserving diffeomorphisms on target
space are given by

J (Y )
µ = Y uΠµ + Y ūΠ̄µ + Y ξPµ (23)

with the usual canonical four-momenta

Πµ ≡ ∂uµL , Pµ ≡ ∂ξµL. (24)

The charges Q(Y ) =
∫

d3rJ (Y )
0 generate a Lie algebra isomorphic to the algebra of the vector

fields v(Y ) via the Poisson bracket, as usual.

3.2. Classification of conserved currents
We now specialize to the class of Lagrangians

L(a, b, c, ξ, d, e) (25)

where
a = uū , b = uµūµ , d = ξµξµ (26)

c = (uµūµ)2 − u2
µū2

ν , e = ξµuµξν ūν . (27)

To motivate this choice let us mention that, e.g., the Skyrme model belongs to this class. Indeed,
the Skyrme model has Lagrangian LSk = m2

2 L2 − λL4 where

L2 = tr(g−1gµg−1gµ) = d + 4b
sin2 ξ

(1 + a)2

L4 = tr[g−1gµ, g−1gν ]2 =
sin2 ξ

(1 + a)2
(bd− e) +

sin4 ξ

(1 + a)4
c

and g is the SU(2) group element of Eq. (21).
For the class of Lagrangians (25) we now want to find which subsets of the currents (23)

are conserved under which conditions. The calculation is lengthy but straight forward, and we
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Table 1. Case a) corresponds to the symmetry u → eiαu.
Case b) implies that the Lagrangian can be expressed by the pullback of a certain target space
metric, such that h is the Riemannian volume density of that metric. One example for this case
is the Skyrme model.
One example for case d) is provided by the abelian projection of Yang–Mills dilaton theory,
which is discussed in Section 4.

No integrability conditions.

a) no condition on L.
Generically there exists only one vector field Y :
Y u = iu, Y ū = −iū, Y ξ = 0.

b) L = F(hb, h2c, d, he).
There exist finitely many Y generating the
isometries of the target space metric.

c) Lb = 0 and Le = 0.
Y form the abelian subalgebra (G̃ = G̃(a)):
Y u = iuG̃a, Y ū = −iūG̃a, Y ξ = 0.

d) conditions b) and c) on L,
and factorizing h = h1(a)h2(ξ).
Y forms the non-abelian subalgebra (for G = G(u, ū)):
Y u = ih−1

1 Gū, Y ū = −ih−1
1 Gu, Y ξ = 0.

Table 2. The integrability condition u2ū2
µ − ū2u2

µ = 0 may also be expressed like
∂µ(mod(u))∂µ(arg(u)) = 0, which provides a more geometric interpretation.

Integrability condition u2ū2
µ − ū2u2

µ = 0

a) Lb = 0 and Le = 0.
Y forms the abelian subalgebra (for G = G(a, ξ)):
Y u = ih−1uGa, Y ū = −ih−1ūGa, Y ξ = 0.

b) Le = 0.
Y form the abelian subalgebra (G̃ = G̃(a)):
Y u = iuG̃a, Y ū = −iūG̃a, Y ξ = 0.

present the resulting classification in the following four tables. In Table 1 the fields just obey
the field equations and, therefore, there is a one to one correspondence between symmetries and
conservation laws. In Tables 2-4, on the other hand, the fields have to obey certain first order
equations (“integrability conditions”), in addition. These integrability conditions are not of the
Euler–Lagrange type and, therefore, there is no longer a one to one correspondence between
symmetries and conservation laws, see Ref. [22] for a detailed discussion.
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Table 3. Case a) is obeyed by many configurations of the Skyrme model. E.g., the simplest
Skyrmion with baryon number one as well as many ansaetze for Skyrmion configurations satisfy
the conditions of case a).
Case d): the “weight number” W is defined for monomials of first derivatives of fields as
W = power(uµ) + power(ūµ)− 2power(ξµ), which gives e.g. W(b) = 2, W(e) = −2.

Integrability conditions uµξµ = 0.

a) no condition on L; or L = F(hb, h2c, d, he).
Y forms the abelian subalgebra (for G = G(a, ξ)):
Y u = ih−1uGa, Y ū = −ih−1ūGa, Y ξ = 0.
And the further integrability condition u2ū2

µ − ū2u2
µ holds.

b) Lb = 0.
Y forms the abelian subalgebra (for G = G(a, ξ)):
Y u = ih−1uGa, Y ū = −ih−1ūGa, Y ξ = 0.

c) Lb = 0 and L = F(hb, h2c, d, he).
Y form the subset Y ξ

ξ = 0 (is not a subalgebra).
d) Lb = 0 and L = F(hb, h2c, d, he) and W(L) = 0.

no further condition on Y .

Table 4. Case b) is obeyed by many configurations of the Skyrme model. E.g., the simplest
Skyrmion with baryon number one or the rational map ansaetze for Skyrmion configurations
satisfy the conditions of case b).

Integrability conditions u2
µ = 0 and uµξµ = 0.

a) no condition on L.
Y forms the abelian subalgebra (for G = G(a, ξ)):
Y u = ih−1uGa, Y ū = −ih−1ūGa, Y ξ = 0.

b) L = F(hb, h2c, d, he)
Y form the subset Y ξ

ξ = 0 (is not a subalgebra).
c) L = F(hb, h2c, d, he) and W(L) = 0.

no further condition on Y .

4. Example: Abelian projection of YM dilaton theory
Here we want to demonstrate that the abelian projection of Yang–Mills dilaton theory is
integrable in our sense. It belongs, in fact, to case d) of Table 1. A more detailed discussion can
be found in Ref. [21]. The Lagrangian of Yang–Mills dilaton theory is

L =
1
4
(2ξµξµ − e−2κξF aµνF a

µν) (28)
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where Aa
µ is an SU(2) Yang–Mills field and F a

µν is the corresponding field strength. Next, we
want to employ the Cho–Faddeev–Niemi decomposition of the gauge field,

Aa
µ = naCµ + εabcnb

µnc + W a
µ , (29)

where Cµ is an abelian gauge field, na is a unit vector in color space, and the so-called “valence
field” W a

µ is perpendicular to na in color space, naW a
µ = 0. To be consistent, the decomposition

fields have to obey the constraint

∂µW a
µ + CµεabcnbW c

µ + naW b
µnb

µ = 0. (30)

This constraint makes that the number of degrees of freedom of the original gauge field and of the
decomposition match, and further, it provides the correct behaviour under gauge transformations
for the decompostion fields, which infinitesimally read

δna = εabcnbαc

δW a
µ = εabcW b

µαc

δCµ = naαa
µ. (31)

In a next step, we perform the abelian projection, which consists in setting the valence field
equal to zero,

W a
µ = 0. (32)

Observe that the abelian projection is gauge invariant and obeys the constraint (30). The
resulting gauge field Âa

µ = naCµ + εabcnb
µnc still is a full SU(2) connection, but with abelian field

strength. The resulting abelian projected Yang–Mills dilaton theory is already integrable, that
is, it has infinitely many conserved currents, see Ref. [21] for details. Here we make the further
simplifying assumption Cµ ≡ 0 (which is no longer gauge invariant). The resulting abelian
projected Lagrangian is

LAP =
1
4

( 2ξµξµ − e−2κξHµνHµν ) (33)

with
Hµν = εabcnanb

µnc
ν (34)

or, after the stereographic projection (22),

LAP =
1
2
ξµξµ − 2e−2κξ (uµūµ)2 − u2

µū2
ν

(1 + uū)4

≡ 1
2
d− 2h2c (35)

where h = h1(a)h2(ξ) ≡ (1 + a)−2e−κξ. It corresponds to case d) of Table 1 and has, therefore,
infinitely many symmetries and infinitely many conservation laws.

We now want to use our explicitly integrable parametrization of the abelian projection of
Yang–Mills dilaton theory to discuss the problem of static solutions. For that purpose, we
should first review the known results on that issue. It is known that there exist static, sphaleron
type solutions in Yang–Mills dilaton theory. For the fully nonabelian theory, solutions both for
radially and cylindrically symmetric ansaetze are known numerically, whereas for the abelian
subsector solutions for radially and cylindrically symmetric ansaetze are known analytically. In
the latter case, it is further known that the energy of the analytic solutions grows linearly with
a certain integer m from the ansatz (the magnetic quantum number). The latter fact points
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to the existence of a Bogomolny bound in the abelian projection, but an ansatz-independent
derivation of this Bogomolny bound has not yet been given in the literature.

In our integrable abelian projection of YM dilaton theory, the analytic solutions may be
calculated easily by quadratures, and the Bogomolny bound may be derived explicitly. Indeed,
upon introducing spherical polar coordinates (r, θ, ϕ) in three-dimensional base space, the ansatz
ξ = ξ(r), u = v(θ) exp(imϕ) turns out to be consistent with the static field equations because of
the base space symmetries of the theory. The resulting ordinary differential equations for ξ(r)
and v(θ) turn out to be solvable by quadratures, such that the corresponding exact analytic
solutions may be calculated easily. The solvability by quadratures of the field equations might
be related to the integrability of the theory. For details we refer to [21].

Finally, the Bogomolny bound may be derived easily within our parametrization. Indeed, we
find for the energy corresponding to the Lagrangian (33) for static configurations

EAP =
1
2

∫
d3r

(
(∇ξ)2 + e−2κξ ~H2

)
=

1
2

∫
d3r

(
∇ξ − e−κξ ~H

)2
+
∫

d3re−κξ∇ξ · ~H

≥
∫

d3re−κξ∇ξ · ~H ≡ EBog.

(where ~H is the Hodge dual of Hjk) and, therefore, the Bogomolny equation

∇ξ − e−κξ ~H = 0. (36)

All the analytic static solutions mentioned above satisfy this equation and are, therefore,
Bogomolny solutions. Further, the Bogomolny energy EBog. may be expressed by the winding
number of a map S3 → S3, see again Ref. [21].

To recapitulate, our main results for the abelian projection of YM dilaton theory are that

• there exist infinitely many symmetries and infinitely many conserved currents,
• this fact may explain the infinitely many analytic solutions (this still is a conjecture, which

exploits the analogy to the lower dimensional cases),
• there exist both a Bogomolny bound and a Bogomolny equation for static configurations,

and the latter is solved by all known analytic solutions.

5. Discussion and Outlook
It was the purpose of this article to briefly review some recent develpoments in the attempts to
generalize the concept of integrability to higher-dimensional nonlinear field theories. We gave
a brief introduction to the general proposal for higher-dimensional integrability of Ref. [1] and
then showed how, under certain additional assumptions, this higher-dimensional integrability
is related to certain geometric target space transformations (concretely, volume preserving
differomorphisms) which provide infinitely many conservation laws. We discussed in some
more detail the case of a three-dimenisonal target space and, as a specific example, the
abelian projection of Yang–Mills dilaton theory and its static analytic solutions. Some more
applications to specific theories have already been studied (see, e.g., the references quoted in
the Introduction), which already demonstrates the usefulness and importance of the concept of
generalized integrability for the study of hgher-dimensional nonlinear field theories. There exist,
however, many more applications which are still open to further investigation. One obvious
application is the search for time-dependent solutions (e.g. Q-balls) in theories where till now
only static solutions have been found (e.g. in the integrable submodel of Yang–Mills dilaton
theory of the previous section). Another possibility for generalizations consists in the choice of
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larger groups G instead of SU(2) in the integrability construction discussed in Section 2. This
leads to integrable theories with higher-dimensional target spaces. The search for an integrable
submodel of Einstein Yang–Mills dilaton theory and for analytic solutions within this submodel
would be an obvious candidate, especially as for this theory only numerical solutions are known
so far.

The generalizations and further investigations mentioned here still deal with a connection
which is trivially flat, Aµ = g−1∂µg, such that the zero curvature condition (2) of Section 2 is
trivially fulfilled, and Eq. (3) remains the only nontrivial generalized zero curvature condition.
A further possible generalization consists in treating Eq. (2) as a nontrivial condition, too,
which generates nontrivial constraints on the connection. The resulting modified generalized
integrability might then lead to nonlocal conserved currents and to conservation laws which are
not generated by geometric transformations, as is well-known to be the case in 1+1 dimensions.
This line of investigation is, however, almost completely unexplored, and the above remarks are,
therefore, largely tentative at the moment.
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