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Abstract. Semigroups of stochastic and bistochastic matrices constructed by means of spin
tomograms or tomographic probabilities and their relations to the problem of Bell’s inequalities
and entanglement are reviewed. The probability determining the quantum state of spins and
the probability densities determining the quantum states of particles with continuous variables
are considered. Entropies for semigroups of stochastic and bisctochastic matrices are studied, in
view of both the Shannon information entropy and its generalization like Rényi entropy. Qubit
portraits of qudit states are discussed in the connection with the problem of Bell’s inequality
violation for entangled states.

1. Introduction

The quantum state of a particle with spin j is determined by the probability distribution function
w(m,u), where −j ≤ m ≤ j is the spin projection and u is unitary group (2j + 1)×(2j + 1)-
matrix which can be also considered as matrix of irreducible representation of SU(2) group with
matrix elements depending on two Euler angles ϕ and θ identified with coordinates on a sphere
S2 [1, 2].

For two spins j1 and j2, the quantum state is determined by the joint probability distribution
w(m1,m2, u) of random spin projections m1 and m2 depending also on the unitary N⊗N -matrix
u, where N = (2j1 +1)(2j2 +1). The matrix u can be taken as tensor product u = u1×u2 of two
unitary matrices which can be considered as generic unitary transform matrices or as matrices
of two irreducible representations of the SU(2) group depending on two points on two spheres
S2⊗S2 or two directions given by unit vectors ~n1 and ~n2 [3].

The physical meaning of the probability distribution w(m,u) consists in the fact that it
provides the probability to get the spin projection on the direction ~n to be equal to m. The
function w(m1,m2, u) provides the probability to get the spin projections j1 and j2 on the
directions ~n1 and ~n2 to be equal, respectively, to m1 and m2.

The joint probability w(m1,m2, . . . ,mN , u) of N qudit states, where m1,m2, . . . ,mN are spin
jk projections on corresponding directions ~nk (k = 1, 2, . . . , N) determines the multiparticle
quantum state of the system. The approach using probabilities to determine quantum states
is called the probability representation of quantum mechanics. It is equivalent to all other
representations of quantum mechanics reviewed, for example, in [4].

Since in the probability representation the quantum states are identified with probability
distributions, such representation provides natural consideration of the aspects related to such
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probability characteristics of quantum correlations as the entanglement phenomenon [5] and
Bell’s inequalities [6–8]. The application of the approach in this context was suggestred in [9–15].
One should point out that some probabilities associated to quantum states [16–18] were applied
to study Bell’s inequalities [6]. Understanding that Bell’s inequalities are characteristics not
only of quantum picture but also characteristics of standard classical probability distributions
was emphasized in [12, 19, 20].

The stochastic and bistochastic matrices have columns which can be considered as probability
vectors with nonnegative vector components equal to a probability of some random event. The
properties of such matrices which form semigroup are given, for example, in [21]. In view of
this, the probability representation of quantum states is naturally connected with stochastic
maps realized by semigroups of stochastic matrices. It is worthy noting that semigroups are
well-known ingredients in quantum theory of states of decaying particles [22].

The aim of this work is to review the probability approach to qudit states, both separable and
entangled, and to relate Bell’s inequalities [7, 8] to the properties of stochastic matrix semigroup
following [11–13].

The paper is organized as follows.
In section 2, the probabilities determining the quantum states of qudits called tomographic

probabilities (or tomograms) are constructed. In section 3, the properties of semigrops of
stochastic matrices, including Shannon [23] and Rényi [24] entropies of the matrices, are
presented. In section 4, Bell’s inequalities [7, 8] are discussed and their connection with
separability and entanglement of multipartite qudit states is considered. Conclusions and
perspertives are given in section 5.

2. Spin-tomogram construction

The tomographic probability density w(X,µ, ν) ≥ 0 determining the quantum state of a particle
with density operator ρ̂ reads [25]

w(X,µ, ν) = Tr
[
ρ̂ (X − µq̂ − νp̂)

]
, (1)

where X is a random position, µ and ν are real parameters, and q̂ and p̂ are position and
momentum operators. The tomographic probability of one qudit pure state | ψ〉 reads [1, 2, 26]

w(m,u) = 〈m | u† | ψ〉〈ψ | u | m〉 = Tr ρ̂ψu | m〉〈m | u†. (2)

The tomographic probability of the pure state of two qudits is constructed analogously

w(m1,m2, u) =
∣∣∣〈m1m2 | u† | ψ〉

∣∣∣2 , (3)

where matrix u belonging to unitary group U(N) can be taken as matrix of the subgroup of
unitary group given as tensor product of local transforms

U(N) = U(N1)⊗ U(N2), (4)

with N1 = 2j1 + 1 and N2 = 2j2 + 1.
For arbitrary number K of qudits, i.e., N =

∏K
k=1Nk with Nk = 2jk + 1, the state tomogram

reads
wρ(m1,m2, . . . ,mK, u) = 〈m1,m2, . . . ,mK | u†ρu | m1,m2, . . . ,mK〉, (5)

which for the pure state gives an analog of (3)

wψ(~m, u) =
∣∣∣〈~m | u† | ψ〉∣∣∣2 , (6)
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where we introduced the vector ~m = (m1,m2, . . . ,mK).
The probability is normalized for any matrix u∑

~m

wρ(~m, u) = 1. (7)

For example, the qubit state | ψ〉 =
(

1
0

)
has the tomogram, which we associate with the

probability vector

~w+(u) =
(
|u11|2
|u22|2

)
. (8)

This means that the probability of the spin projection on the direction ~n reads

w (+1/2, ~n) = cos2 θ/2, w (−1/2, ~n) = sin2 θ/2. (9)

The two qubit entangled state

| ψ〉 =
1√
2

(
| +1/2,+1/2〉+ | −1/2,−1/2〉

)
(10)

is determined by tomogram which can be presented as the probability four-vector depending on
matrix elements of 4×4-unitary matrix

~wψ(u) =
1
2


|u11 + u41|2
|u12 + u42|2
|u13 + u43|2
|u14 + u44|2

 . (11)

For separable state, in the case of u = u1 ⊗ u2, the tomograpgic probability vector can be
presented in the form of convex sum of tensor-product vectors

~w =
∑
k

pk ~w
(k)(u1)⊗ ~w(k)(u2). (12)

If one takes the matrix u in the form of tensor-product of two 2×2-unitary matrices u1 and u2,
vector (11) will be expressed in terms of probability of spin projections on the directions ~n1 and
~n2 given as follows:

w (+1/2,+1/2, u1, u2) =
1
2
|u11 + u41|2, w (+1/2,−1/2, u1, u2) =

1
2
|u12 + u42|2,

(13)

w (−1/2,+1/2, u1, u2) =
1
2
|u13 + u43|2, w (−1/2,−1/2, u1, u2) =

1
2
|u14 + u44|2,

In the case of tensor product of 2×2-matrices u(1) and u(2). one has the matrix elements of
4×4-matrix u as follows:

u11 = u
(1)
11 u

(2)
11 , u12 = u

(1)
11 u

(2)
12 , u13 = u

(1)
12 u

(2)
11 , u14 = u

(1)
12 u

(2)
12 ,

(14)

u41 = u
(1)
21 u

(2)
21 , u42 = u

(1)
21 u

(2)
22 , u43 = u

(1)
22 u

(2)
21 , u44 = u

(1)
22 u

(2)
22 .
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The tomographic-probability vectors can be transformed by means of matrices. For example,
the qubit state (9) can evolve due to some interaction corresponding to a Hamiltonian which is
Hermite 2×2-matrix H providing the evolution of the state vector | ψ〉 as follows:

| ψ, t〉 = exp (−iHt) | ψ, 0〉. (15)

The unitary matrix uH(t) = exp (−iHt) gives the change of the tomographic-probability vector

w(m,u, 0) =
∣∣∣〈m | u† | ψ, 0〉∣∣∣2 −→ ∣∣∣〈m | (u†uH(t)

)
| ψ, 0〉

∣∣∣2 = w(m,u, t). (16)

The time evolution of a quantum state provides a change of the tomographic probability vector
of the quantum state. If the initial density matrix is diagonal, the evolution is realized by the
matrix

Mjk =
∣∣∣∣(e−itH)jk

∣∣∣∣2 . (17)

3. Stochastic and bistochastic matrices

Let us consider matrices Mjk with nonnegative matrix elements satisfying the condition

N∑
j=1

Mjk = 1. (18)

Such stochastic matrices form semigroup. The matrices Mjk with the property

N∑
j=1

Bjk =
N∑
k=1

Bjk = 1 (19)

also form semigroup. The matrix elements in columns of stochastic matrices provide probability
distributions. The matrix elements of bistochastic matrices Bjk give the probability distributions
in both columns and rows.

In infinite-dimensional Hilbert space with discrete basis like Fock states | n〉, the definitions
(18) and (19) hold with the replacement N → ∞. For example, in the oscillator case, one can
use the formalism of semigroups transforming the tomograms of oscillator states. If one has a
probability vector ~w, the stochastic and bistochastic matrices give the linear transform of the
vector providing new probability vectors

~wM = M ~w, ~wB = B~w. (20)

One can consider entropy of stochastic and bistochastic matrices

HM = −
N∑

jk=1

Mjk lnMjk, HB = −
N∑

jk=1

Bjk lnBjk. (21)

The entropies are larger than zero. The minima of the entropies are zero and the maxima of
the entropies are N lnN . The qudit states are also characterized by entropies. For example, the
state with tomogram w(m,u) has entropy, which is a function on unitary group [27, 14]

H(u) = −
∑
m

w(m,u) lnw(m,u). (22)
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This is the Shannon entropy of quantum qudit state. The von Neumann entropy of the state

S = −Tr ρ ln ρ (23)

is the minimun of the tomographic Shannon entropy [27, 14]

S = min H(u). (24)

One can construct the stochastic matrices using as their columns the tomographic-probability
vectors taken at different unitary group elements u. For example, the qubit state w(m,u) creates
2×2 stochastic matrix

Mq(u1, u2) =
(
w(+1/2, u1) w(+1/2, u2)
w(−1/2, u2) w(−1/2, u2)

)
, (25)

which depends on two unitary group 2×2-matrices u1 and u2.
For u1 = u2 = u, the matrix constructed has the property

Mq(u, u)M = Mq(u, u), (26)

where M is an arbitrary stochastic matrix. Any tomogram under the action of matrix Mq

becomes the tomogram which is the vector in column of the matrix Mq(u, u).
For given tomogram of two qubits w(m1,m2, u), one can construct some probability

distributions. For example, one can consider the probability to find spin projection of the
first particle to be equal to +1/2 (−1/2). One has for these probabilities

w(+1/2, u) =
∑
m2

w(+1/2,m2, u), w(−1/2, u) =
∑
m2

w(−1/2,m2, u). (27)

Analogous probabilities can be found for the second particle. These probabilities are the
marginals of joint probability distributions

w(m1, u) =
∑
m2

w(m1,m2, u), w(m2, u) =
∑
m1

w(m1,m2, u). (28)

Other probabilities can be found answering questions like “what is the probability that both
spin projections are equal? and “what is the probability that both spin projections are different?

The answer to these questions provides the probability distributions

Peq(u) =
∑
m

w(m,m, u), Pd(u) =
∑
m

w(m,m+ 1, u), (29)

where the sum (m + 1) means summation modulo 1. This means that here −1/2 + 1 = 1/2
and 1/2 + 1 = −1/2. The marginals (29) provide the qubit portrait of the initial probability
distribution [13, 10].

Let us study a qubit state with density matrix ρ1 and the corresponding tomographic-
probability vector

~w1(u1) =
(
w1(+1/2, u1)
w1(−1/2, u1)

)
(30)

and construct stochastic matrix

Mq1 =
(
w1(+1/2, ua) w1(+1/2, ud)
w1(−1/2, ua) w1(−1/2, ud)

)
, (31)
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taking two values of unitary 2×2-matrix u1 denoted ua and ud corresponding to two directions
~na and ~nd, respectively.

Then we consider the second qubit with density matrix ρ2, which is determined by the
tomographic-probability vector

~w2(u2) =
(
w2(+1/2, u2)
w2(−1/2, u2)

)
, (32)

and construct stochastic matrix

Mq2 =
(
w2(+1/2, ub) w2(+1/2, uc)
w2(−1/2, ub) w2(−1/2, uc)

)
, (33)

taking two values of unitary 2×2-matrix u2 denoted ub and uc corresponding to two directions
~nb and ~nc, respectively.

The tensor product of two stochastic matrices

M = Mq1 ⊗Mq2 (34)

is 4×4-matrix with the column being tomographic-probability distributions of a two-qubit
quantum state with density matrix ρ12 = ρ1 ⊗ ρ2 given by (13), in view of the corresponding
choice of matrices u1 and u2.

The stochastic matrix of the form M has a specific property. Let us consider 4×4-
matrix [10, 12, 13]

I =


1 −1 −1 1
1 −1 −1 1
1 −1 −1 1
−1 1 1 −1

 (35)

and calculate the trace
B = Tr IM. (36)

One can show that for any stochastic 4×4-matrix M of the form (34) the following inequality
holds: |B| ≤ 2. The Shannon entropy for matrices (29), (33), and (34) read

Hq1 = H(ua) +H(ud), Hq2 = H(ub) +H(uc), (37)

where the Shannon entropies depending on unitary 2×2-matrices are given by (22).
One can consider Rényi entropy [24] of the stochastic matrix. For matrix Mq (25), the Rényi

entropy is

R(u1, u2) =
1

1− q
ln
{[
wq(+1/2, u1) + wq(−1/2, u1)

][
wq(+1/2, u2) + wq(−1/2, u2)

]}
= R1(u1) +R2(u2), (38)

where the number q provides parametric dependence of the Rényi entropy and in the limit q → 1
the Rényi entropy becomes the Shannon entropy. In (38)

Rj(uj) =
1

1− q
ln
[
wq(+1/2, uj) + wq(−1/2, uj)

]
, j = 1, 2 (39)

is the Rényi entropy associated to the probability vector in jth column of matrix (25).
Some new inequalities for the Rényi entropy of symplectic tomogram describing the quantum

state of a system with continuous variables were obtained in [28–33].
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4. Bell’s inequalities

The inequality properties for stochastic matrices constructed by means of tomographic
probability vectors correspond to Bell’s inequalities [6–8]. The inequality given in [7] is written
for correlations of spin projections onto different directions. The inequality [8] generalizing the
inequality [7] is written for the following probabilities.

Given two qudits with equal j. We produce a shift labelling the spin projections as follows:

−j → 0,−j + 1→ 1, . . . , j → d, d = 2j + 1.

This means that in the tomographic probability distribution all spin projections are denoted by
integer nonnegative numbers. Let us have for two-qudit state the joint tomographic probability
distribution w(m1,m2, u), where now m1,m2 = 0, 1, . . . , 2j. Now we consider the following
probability of the event that the results of measuring m1 and m2 differe by integer k, i.e.,

P (m1 = m2 + k, u) =
2j∑
m=0

w(m,m− k, u), (40)

where the difference m−k means the nonnegative number equal to m−k modulo d. For example,
if d = 2, one has 0− 1 = 1, and if d = 3, one has 2− 3 = 2, 0− 2 = 1.

If one uses the matrix u = u1 ⊗ u2 the probability can be rewritten in the form

P (m1 = m2 + k, u1, u2) =
2j∑
m=0

w(m,m− k, u1, u2), (41)

where now u1 and u2 are local unitary transforms.
Other notation can be used for these probabilities and for the tomogram [8, 11, 34]

P (Aa = Bb + k) =
d−1∑
m=0

P (Aa = m,Bb = m− k), (42)

where d = 2j + 1 and subscripts a and b correspond to u1 and u2. There exists the inequality
formulated in this notation as follows:

Id =
[ d
2 ]−1∑
k=0

(
1− 2k

d− 1

)
×
{[
P (A1 = B1 + k) + P (B1 = A2 + k + 1) + P (A2 = B2 + k) + P (B2 = A1 + k)

]
−
[
P (A1 = B1 − k − 1) + P (B1 = A2 − k) + P (A2 = B2 − k − 1) + P (B2 = A1 − k − 1)

]}
≤ 2.

(43)

Using notation (41) in terms of qudit-state tomogram for the probabilities, one can check that
for d = 2 inequality (43) is identical to the inequality for Bell’s number (38).

The trace of product of real N×N -matrices can be constructed as scalar product of N2-
vectors in N2-dimensional Hilbert space. Thus the inequality |Tr IM | ≤ 2 can be considered as
the inequality |~I ~M | ≤ 2, where vectors ~I and ~M have matrix elements of the matrices I and M
as their components.

The inequality [7] has the form∣∣∣∣∣ ∑
m1m2

∑
k

w(m1,m2, uk)c(m1,m2, k)

∣∣∣∣∣ ≤ 2, (44)
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where the coefficients of the linear form c(m1,m2, k) depend on the index of unitary matrix uk
and the spin projections m1 and m2.

For Bell’s inequality [7], c(m1,m2, k) are just matrix elements of the matrix I (37). For
two qutrits, the coefficients can be obtained too [11]. For entangled states, Bell’s inequalities
can be violated. Thus, for two qubits, the number |B| (38) can reach value 2

√
2 which is the

Cirelson bound [35]. One can construct the stochastic matrix M for two qudit states with
the probability vector ~w(u) using these vectors as columns ~w(u) of the matrix. The index
k = 1, 2, . . . , d2 can be considered as a pair of indices k = (α, β) where α, β = 1, 2, . . . , d. For
the matrices u(α,β) = uα⊗uβ, where α and β are unitary d⊗d-matrices. the simply separable
two-qudit state has the stochastic matrix M of the tensor-product form M = M1(uα)⊗M2(uβ),
where the stochastic matrices M1 and M2 are constructed from the tomographic-probability
vectors of qudits ~w(uα) and ~w(uβ) used as columns of these matrices. The separable state of
two qudits can be associated with convex sum of the stochastic matrices of the given tensor-
product form. Both the tensor product of such matrices and convex sum of the tensor products
satisfy the same inequality of the form

∣∣∣∑i,j cijMij

∣∣∣ ≤ L. The bound L is different for the matrix
M corresponding to entangled state. The coefficients cij have some geometrical meaning which
one needs to clarify.

5. Conclusions

To conclude, we formulate our main results.
We reviewed the probability representation of quantum mechanics in which quantum

states are described by standard ptobability distributions. The probability distribution (or
tomographic probability distribution) can be considered as the probability vector. For qudits,
the probability vector depends on random spin projections and unitary group. Using the
tomographic probability vectors we constructed the stochastic matrices. The columns of the
stochastic matrices were taken as tomographic probability vectors at different values of the
unitary-group elements. The properties of the constructed stochastic matrices associated with
quantum states and forming semigroups provide the possibility to understand mathematical
mechanism of Bell’s inequality violations for entangled quantum states of multipartite systems.

We pointed out that the joint probability distributions used to study Bell’s inequality
violations in [8] are just spin tomograms introduced to describe quantum states of bipartite
systems in [3] (see, also [9]).

The example of two qubit states considered in this paper demonstrates that Bell’s inequality
violations is a specific property of joint probability distributions which can be used either in
classical statistics or in quantum mechanics. This observation is coherent with considerations
presented in recent works [19, 20] where Bell’s inequalities were discussed for classical probability
distributions.
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