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Nonlinear completion of massive gravity of the

Fierz-Pauli type

Shinji Hamamoto
Department of Physics, University of Toyama, Toyama 930-8555, Japan

E-mail: hamamoto@sci.u-toyama.ac.jp

Abstract. A possible nonlinear completion of massive gravity of the Fierz-Pauli type is
proposed. The theory describes a system consisting of a massive tensor field of the Fierz-
Pauli type and an additional massive vector field. Massless limit as well as flat-spacetime limit
can be taken smoothly. Constructing a nonlinear version of the physical-state condition which
drives an extra scalar ghost from physical states is still unsettled.

1. Introduction
In a series of papers [1, 2, 3, 4, 5], attempts to construct the theory of massive gravity with
smooth massless limit were made.

We studied infrared regularization of linearized massive tensor fields in [1, 2, 3, 4]. Two
model theories were considered: one is of the pure-tensor (PT) type, which describes an ordinary
massive tensor field of five degrees of freedom; the other is of the additional-scalar-ghost (ASG)
type, which contains a scalar ghost in addition to the pure tensor. The ASG model shows second-
order massless singularities in two-point functions, whereas the PT model contains fourth-order
singularities. It turns out that two procedures, the BRS one and the Nakanishi one, are effective
in regularizing such singularities. The BRS procedure produces transparent structures to the
resulting theories, as compared with the Nakanishi one. So we studied the former in detail. In
order to drive away the second-order infrared singularities in the ASG model, we introduce an
auxiliary vector-like field, and promote the original theory to the one that is invariant under
the vector BRS transformation. On the other hand, to carry out infrared regularization of the
fourth-order singularities in the PT model, we need to introduce an auxiliary scalar field in
addition to the vector-like one, and make the resulting theory invariant under the scalar BRS
transformation as well as the vector one.

When we try to perform nonlinear completion, the ASG model is easier to deal with than
the PT model. This is because only the vector BRS transformation is involved there. The
nonlinear form of this transformation is simply the quantum version of the general coordinate
transformation. The scalar BRS, on the other hand, has no classical counterpart. Constructing
its proper nonlinear generalization is not an easy task. A possible nonlinear completion of the
BRS model of the ASG-type massive tensor was proposed in [5] (See also [6].). We also pointed
out there that ghost condensation mechanism may work well for making innocuous the additional
scalar ghost.

The purpose of the present paper is to put into practice nonlinear completion of the infrared-
regularized PT model. In order to avoid introducing scalar BRS, we ask for the help of the
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Nakanishi procedure. Then it is found straightforward to construct nonlinear Lagrangian for
that BRS+Nakanishi model of the PT-type massive tensor.

However, this is not the end of the story. In the present formulation, there occurs a new
trouble concerning physical-state condition of the Nakanishi-type. Finding a nonlinear version
of such condition requires further studies.

In section 2, we review the case of Abelian vector field. This is to see how the BRS and
the Nakanishi procedures work for regularizing massless singularities contained in the original
massive theory. Stress is put on the fact that choosing massive gauge in the BRS procedure
gives simple pole structure to two-point functions and makes it easy to investigate particle
contents of physical states. In section 3, we treat linear theories of massive tensor field. Second-
order massless singularities in the ASG model are regularized by the BRS procedure, whereas
fourth-order singularities in the PT model are regularized by the use of both the BRS and the
Nakanishi procedures. Emphasis is laid also here on the usefulness of adopting massive gauge.
Section 4 treats nonlinear completion of the BRS+Nakanishi model of the PT-type massive
tensor. After introducing nonlinear BRS transformation and basic BRS invariants, we propose
possible nonlinear forms for the Lagrangian. Difficulties of finding a nonlinear version of the
Nakanishi-type physical-state condition are also pointed out. Summary and discussion are given
in section 5.

2. Massive vector
2.1. Massless vector
Let us begin with massless vector. The Lagrangian is given by1

L0 = −1
4
FµνF

µν + Lα
GF+FP, (1)

where Lα
GF+FP is the gauge-fixing and Faddeev-Popov (GF+FP) Lagrangian

Lα
GF+FP = b

(
∂µAµ +

α

2
b
)

+ ic̄¤ c

= −iδ
[
c̄
(
∂µAµ +

α

2
b
)]

(2)

with the gauge parameter α. The theory is invariant under the BRS transformation

δAµ = ∂µc, δc̄ = ib. (3)

For α = 1, two-point functions take simple forms:2

〈AµAν〉 =
ηµν

¤ δ, 〈Aµb〉 =
∂µ

¤ δ, 〈bb〉 = 0, 〈cc̄〉 = −i
1
¤δ. (4)

Physical states are defined by the use of the conserved BRS charge QB:

QB|phys〉 = 0. (5)

In order to clarify the particle contents of the physical states, we expand any field ΦA(x) as

ΦA(x) =
1

(2π)3/2

∫
d4p θ(p0)

[
ΦA(p)eipx + Φ†A(p)e−ipx

]
. (6)

1 The flat spacetime metric used in the present paper is ηµν = (−1, +1, +1, +1).
2 Here and hereafter the spacetime coordinates are omitted in the field variables as well as in the δ-functions.
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In the axial coordinate (p1 = p2 = 0, p3 > 0), let us define as

ϕ1(p)
d≡ A1(p), ϕ2(p)

d≡ A2(p), χ(p)
d≡ 1

p3
A3(p). (7)

Then we find that
{
ϕi(p) (i = 1, 2)

}
are BRS singlets and physical, whereas {χ(p), b(p), c(p), c̄(p)}

constitute a BRS quartet.

2.2. Massive vector: naive model
Mass is introduced through the Proca Lagrangian

Lm [Aµ] = −1
4
FµνF

µν − m2

2
AµAµ. (8)

This naive model of massive vector field gives two-point functions with the second-order massless
singularities like

〈AµAν〉 =
1

¤−m2

(
ηµν − ∂µ∂ν

m2

)
δ. (9)

The field equations {
(¤−m2)Aµ = 0,

∂µAµ = 0
(10)

ensure that the physical degrees of freedom count three,
{
ϕi(p) (i = 1, 2), χ(p)

}
, in this case.

2.3. Massive vector: Nakanishi model
In order to remove the massless singularities involved in the naive model, Nakanishi [7] proposed
the following type of Lagrangian:

LN = Lm [Aµ] + Lα
‘GF′ , Lα

‘GF′ = b
(
∂µAµ +

α

2
b
)

, (11)

where Lm [Aµ] is the Proca Lagrangian and Lα
‘GF′ is the gauge-fixing-like one.3 For α = 1,

two-point functions are then

〈AµAν〉 =
ηµν

¤−m2
δ, 〈Aµb〉 =

∂µ

¤−m2
δ, 〈bb〉 = − m2

¤−m2
δ, (12)

which show the massless singularities have disappeared. Note that the Nakanishi-Lautrup field
b(x) is a ghost for m 6= 0. Physical states are picked out by the condition

b(+)(x)|phys〉 = 0, (13)

where b(+)(x) denotes the positive frequency part of b(x). In the massive case, we can introduce
the field

χ̃(p)
d≡ χ(p) + i

1
m2

b(p), (14)

and find that the set of the fields
{
ϕi(p) (i = 1, 2), χ̃(p)

}
is physical and the ghost b(p) is

unphysical. In the massless case, on the other hand, the set of the fields
{
ϕi(p) (i = 1, 2), b(p)

}
becomes physical and the field χ(p) becomes unphysical. Note that the field b is zero-normed
in this case. That means b is not observable, there remaining only two observable degrees of
freedom.
3 The Proca Lagrangian does not show any gauge invariance. Therefore, adding the term Lα

‘GF′ has nothing to
do with gauge-fixing procedure.
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2.4. Massive vector: BRS model
The BRS model Lagrangian is constructed as follows: introduce an auxiliary scalar field θ,
promote the Proca Lagrangian (8) to a gauge invariant one by replacing Aµ with Aµ − 1

m∂µθ,
and append a certain GF+FP Lagrangian. The total Lagrangian is given as

LBRS = Lm

[
Aµ − 1

m
∂µθ

]
+ Lmα

GF+FP

= Lm [Aµ]−mθ∂µAµ − 1
2
∂µθ∂µθ + Lmα

GF+FP. (15)

For the GF+FP Lagrangian, we adopt here the following massive type instead of the massless
one (2):

Lmα
GF+FP = b

(
∂µAµ −mθ +

α

2
b
)

+ ic̄
(
¤−m2

)
c

= −iδ
[
c̄
(
∂µAµ −mθ +

α

2
b
)]

. (16)

The choice of (16) gives simple pole structure to two-point functions and makes it easy to
investigate particle contents of physical states. The BRS transformation which keeps the theory
invariant is

δAµ = ∂µc, δθ = mc, δc̄ = ib. (17)

For α = 1, two-point functions are calculated to give

〈AµAν〉 =
ηµν

¤−m2
δ, 〈Aµb〉 =

∂µ

¤−m2
δ, 〈bb〉 = 0, 〈cc̄〉 = −i

1
¤−m2

δ,

〈Aµθ〉 = 0, 〈bθ〉 =
m

¤−m2
δ, 〈θθ〉 =

1
¤−m2

δ.

(18)

Physical states are defined as
QB|phys〉 = 0. (19)

If we introduce the field
θ̃(p)

d≡ θ(p) + imχ(p) +
m

(p3)2
b(p), (20)

we can find the following particle contents: {ϕi(p) (i = 1, 2), θ̃(p)} are BRS singlets and physical;
and {χ(p), b(p), c(p), c̄(p)} make up a BRS quartet.

3. Massive tensor: linear theories
3.1. Massless tensor
A massless tensor field is described by the Lagrangian

L0 =
1
2
hµνΛµν,ρσhρσ + Lα

GF+FP (21)

with
Λµν,ρσ

d≡ (ηµρηνσ − ηµνηρσ) ¤− (ηµρ∂ν∂σ + ηνσ∂µ∂ρ) + (ηρσ∂µ∂ν + ηµν∂ρ∂σ) . (22)

For the GF+FP Lagrangian, we choose

Lα
GF+FP = bµ

(
∂νh

µν − 1
2
∂µh +

α

2
bµ

)
+ ic̄µ¤ cµ

= −iδ
[
c̄µ

(
∂νh

µν − 1
2
∂µh +

α

2
bµ

)]
, (23)
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where α is the gauge parameter and h is defined by h
d≡ hµ

µ. The theory is invariant under the
BRS transformation

δhµν = ∂µcν + ∂νcµ, δc̄µ = ibµ. (24)

For α = 1
2 , we have simple forms of two-point functions:

〈hµνhρσ〉 =
1
¤

1
2

(ηµρηνσ + ηµσηνρ − ηµνηρσ) δ,

〈hµνbρ〉 =
1
¤ (ηµρ∂ν + ηνρ∂µ) δ, 〈bµbν〉 = 0, 〈cµc̄ν〉 = −i

1
¤ δµ

ν δ.

(25)

Physical states are defined by the condition

QB|phys〉 = 0. (26)

In the axial coordinate (p1 = p2 = 0, p3 > 0) we define

φ1(p)
d≡ 1

2
[
h11(p)− h22(p)

]
, φ2(p)

d≡ h12(p),

χ0(p)
d≡ 1

2p0
h00(p), χ1(p)

d≡ 1
p0

h01(p), χ2(p)
d≡ 1

p0
h02(p), χ3(p)

d≡ 1
2p3

h33(p).
(27)

Particle contents are then as follows: {φi(p) (i = 1, 2)} are BRS singlets and physical;
{χµ(p), bµ(p), cµ(p), c̄µ(p)} form BRS quartets.

3.2. Massive tensor: naive model
Naive introduction of mass is carried out through the Lagrangian

La
m [hµν ] =

1
2
hµνΛµν,ρσhρσ − m2

2
(
hµνhµν − ah2

)
. (28)

The parameter a has two choices of interest: a = 1 and a = 1
2 , corresponding to the PT model

and the ASG one respectively. In the case of a = 1, the Lagrangian has the Fierz-Pauli type
mass term, and gives the field equations





(
¤−m2

)
hµν = 0,

∂νh
µν = 0,

h = 0.

(29)

Therefore, this model does describe an ordinary massive tensor field of five degrees of freedom.
The two-point functions

〈hµνhρσ〉 =
1

¤−m2

{
1
2

(ηµρηνσ + ηµσηνρ − ηµνηρσ)

− 1
2m2

(ηµρ∂ν∂σ + ηµσ∂ν∂ρ + ηνρ∂µ∂σ + ηνσ∂µ∂ρ)

+
2
3

(
1
2
ηµν +

∂µ∂ν

m2

)(
1
2
ηρσ +

∂ρ∂σ

m2

)}
δ (30)

show the fourth-order massless singularities. In the case of a = 1
2 , on the other hand, field

equations reduce to 



(
¤−m2

)
hµν = 0,

∂νh
µν − 1

2
∂µh = 0.

(31)
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The number of physical degrees of freedom of this model is six; five corresoponds to a massive
tensor, and one is to an additional scalar ghost field. The two-point functions

〈hµνhρσ〉 =
1

¤−m2

{
1
2

(ηµρηνσ + ηµσηνρ − ηµνηρσ)

− 1
2m2

(ηµρ∂ν∂σ + ηµσ∂ν∂ρ + ηνρ∂µ∂σ + ηνσ∂µ∂ρ)
}

δ (32)

contain only the second-order massless singularities in this case.

3.3. ASG-type massive tensor: BRS model
In order to promote the ASG model to a BRS invariant one, introduce an auxiliary vector field
θµ, replace hµν with the combination hµν − 1

m(∂µθν − ∂νθµ) in the Lagrangian (28) with a = 1
2 ,

and append a certain GF+FP Lagrangian. The total Lagrangian is

L
a= 1

2
BRS = L

a= 1
2

m

[
hµν − 1

m
(∂µθν + ∂νθµ)

]
+ Lmα

GF+FP

= L
a= 1

2
m [hµν ]− 2mθµ

(
∂νh

µν − 1
2
∂µh

)
− ∂µθν∂

µθν + Lmα
GF+FP. (33)

Following the BRS procedure for the massive vector in section 2.4, we adopt the following
GF+FP Lagrangian of massive type:

Lmα
GF+FP = bµ

(
∂νh

µν − 1
2
∂µh−mθµ +

α

2
bµ

)
+ ic̄µ

(
¤−m2

)
cµ

= −iδ
[
c̄µ

(
∂νh

µν − 1
2
∂µh−mθµ +

α

2
bµ

)]
. (34)

The BRS transformation

δhµν = ∂µcν + ∂νcµ, δθµ = mcµ, δc̄µ = ibµ (35)

keeps the system invariant. For α = 1
2 , two-point functions are calculated as

〈hµνhρσ〉 =
1

¤−m2

1
2

(ηµρηνσ + ηµσηνρ − ηµνηρσ) δ,

〈hµνbρ〉 =
1

¤−m2
(ηµρ∂ν + ηνρ∂µ) δ, 〈bµbν〉 = 0, 〈cµc̄ν〉 = −i

1
¤−m2

δµ
ν δ,

〈hµνθρ〉 = 0, 〈bµθν〉 =
m

¤−m2
ηµνδ, 〈θµθν〉 =

1
2

1
¤−m2

ηµνδ.

(36)

Physical states are defined by
QB|phys〉 = 0. (37)

Let us introduce a field θ̃µ(p) as the combination

θ̃µ(p)
d≡ θµ(p) + imχµ(p) + mωµνbν(p) (38)

with the matrix ωµν having the components




ω00 =
1

8(p0)2
, ω03 = ω30 =

1
8p0p3

, ω33 =
1

8(p3)2
,

ω11 = ω22 = − 1
2(p0)2

, the others = 0.
(39)
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Then we find the following particle contents: {φi(p) (i = 1, 2), θ̃µ(p)} are BRS singlets and
physical; {χµ(p), bµ(p), cµ(p), c̄µ(p)} make up BRS quartets. Note that there remains a ghost
θ̃0(p) in the physical states. Nonlinear completion of this model including a possible mechanism
of killing the ghost was reported at QTS-4 [6] (See also [5].).

3.4. PT-type massive tensor: BRS+Nakanishi model
We have seen in section 3.2 that the PT model of massive tensor shows fourth-order massless
singularities in two-point functions. Those singularities cannot be removed by such simple
application of the BRS procedure as done in section 3.3. So we invoke the Nakanishi procedure
in addition to the BRS one. For the Lagrangian, we adopt the following form:

La=1
BRS+N = La=1

m

[
hµν − 1

m
(∂µθν + ∂νθµ)

]
+ Lmα

GF+FP + Lβ
‘GF′

= La=1
m [hµν ]− 2mθµ (∂νh

µν − ∂µh)− 1
2

(∂µθν − ∂νθµ)2 + Lmα
GF+FP + Lβ

‘GF′ . (40)

Here the first and the second terms on the right side of the first line are from the BRS procedure,
and the third term Lβ

‘GF′ represents the gauge-fixing-like term in the Nakanishi procedure. For
Lβ

‘GF′ , we also choose massive type of the following form:

Lβ
‘GF′ = b

(
∂µθµ − m

2
h +

β

2
b

)
(41)

with the second parameter β. Assuming the Nakanishi-Lautrup field b is BRS invariant, the
total Lagrangian is invariant under the BRS transformation

δhµν = ∂µcν + ∂νcµ, δθµ = mcµ, δc̄µ = ibµ, δb = 0. (42)

Two-point functions show simple pole structure for α = β = 1
2 as follows:

〈hµνhρσ〉 =
1

¤−m2

1
2

(ηµρηνσ + ηµσηνρ − ηµνηρσ) δ,

〈hµνbρ〉 =
1

¤−m2
(ηµρ∂ν + ηνρ∂µ) δ, 〈bµbν〉 = 0, 〈cµc̄ν〉 = −i

1
¤−m2

δµ
ν δ,

〈hµνθρ〉 = 0, 〈bµθν〉 =
m

¤−m2
ηµνδ, 〈θµθν〉 =

1
2

1
¤−m2

ηµνδ,

〈hµνb〉 = − m

¤−m2
ηµνδ, 〈θµb〉 =

∂µ

¤−m2
δ, 〈bµb〉 = 0, 〈bb〉 = − 6m2

¤−m2
δ.

(43)

The fourth-order massless singularities have been driven away indeed. Note that, as seen from
the last equation of (43), the field b is a ghost for m 6= 0. This is the same situation as in the
case of massive vector in section 2.3. Physical states are picked out by two conditions of the
BRS type and the Nakanishi type:

QB|phys〉 = 0, b(+)(x)|phys〉 = 0. (44)

In order to investigate the particle contents, we introduce the following quantities:

ϕ1(p)
d≡ θ̃1(p), ϕ2(p)

d≡ θ̃2(p), χ(p)
d≡ 1

p3
θ̃3(p). (45)
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For the massive case, we can introduce the combination

χ̃(p)
d≡ χ(p) + i

1
6

(
1

m2
+

1
2(p3)2

)
b(p). (46)

Particle contents are then: {φi(p), ϕi(p) (i = 1, 2), χ̃(p)} are BRS singlets and physical; b(p) is
a BRS singlet but unphysical (ghost); {χµ(p), bµ(p), cµ(p), c̄µ(p)} constitute BRS quartets. For
the massless case, on the other hand, we cannot define a field like χ̃. In this case, we find the
following particle contents: {φi(p), ϕi(p) (i = 1, 2), b(p)} are BRS singlets and physical; χ(p) is
a BRS singlet but unphysical; {χµ(p), bµ(p), cµ(p), c̄µ(p)} form BRS quartets. Note again that
in the massless case, b is physical but unobservable because it is zero-normed. From now on, we
focus on the model described by the Lagrangian (40) with α = β = 1

2 .

4. Massive tensor: nonlinear completion
4.1. Nonlinear BRS transformation
To study nonlinear theories we introduce the metric gµν and the tetrad e µ

k through

gµν
d≡ ηµν − κhµν , e µ

k ekν = gµν (47)

with the gravitational constant κ. The linear BRS transformation (42) is extended to its
nonlinear form: 




δe µ
k = κ

(
∂ρc

µ · e ρ
k − cρ∂ρe

µ
k

)
,

δθµ = mcµ − κcρ∂ρθ
µ,

δcµ = −κcρ∂ρc
µ,

δc̄µ = ibµ,

δb = −κcρ∂ρb.

(48)

Basic quantities invariant under the nonlinear BRS transformation can be constructed as

E µ
k

d≡ e µ
k − κ

m
e ρ
k ∂ρθ

µ, (49)

Gµν d≡ E µ
k Ekν = gµν − κ

m
(gρµ∂ρθ

ν + gρν∂ρθ
µ) +

( κ

m

)2
gρσ∂ρθ

µ∂σθν . (50)

In fact they behave as scalars under the transformation (48):

δE µ
k = −κcρ∂ρE

µ
k , δGµν = −κcρ∂ρG

µν . (51)

Possible Lagrangians are therefore of the form

L =
√−g F

(
E µ

k , b
)
, (52)

where F is an arbitrary function. The action is indeed invariant, because such Lagrangian as
(52) is transformed as

δL = −κ∂µ (cµL) . (53)
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4.2. Nonlinear Lagrangian
We require for the Lagrangian to be at most quadratic in E µ

k and to reduce to La=1
BRS+N in the

flat-spacetime limit (κ → 0). Then we have the following form consisting of four terms:

L = L̃m + γL̃R + L̃α
GF+FP + L̃β

‘GF′ , (54)

with an arbitrary real number γ. These terms are given by

L̃m =
1

2κ2

√−g

{
R +

m2

2

[
6−Gµνηµν −

(
E µ

k δk
µ

)2
+ 2E µ

k δl
µE ν

l δk
ν

]}
, (55)

L̃R =
m2

κ2

√−g

[
−3 + 2E µ

k δk
µ −

1
2

(
E µ

k δk
µ

)2
+

1
2
E µ

k δl
µE ν

l δk
ν

]
, (56)

L̃α
GF+FP = −iδ

[
c̄µ

(
1
κ

∂ν g̃
µν −mθµ +

α

2
ηµνbν

)]

= bµ

(
1
κ

∂ν g̃
µν −mθµ +

α

2
ηµνbν

)
+ ic̄µ

(
∂νD

µν
ρ −m2δµ

ρ

)
cρ + iκmc̄µcρ∂ρθ

µ, (57)

and

L̃β
‘GF′ =

√−g b

[
m

κ

(
δµ
k − E µ

k

)
δk
µ +

β

2
b

]
, (58)

where we have used the definitions

g̃µν d≡ √−g gµν , (59)

Dµν
ρ

d≡ g̃µσδν
ρ∂σ + g̃νσδµ

ρ ∂σ − g̃µν∂ρ − (∂ρg̃
µν) . (60)

We can easily verify that the main part of the Lagrangian L̃m + L̃α
GF+FP + L̃β

‘GF′ goes to La=1
BRS+N

and the redundant part L̃R becomes null in the flat spacetime limit, κ → 0.

4.3. Physical states
In the linear theory, physical states are picked out by the two conditions, the BRS-type one
QB|phys〉 = 0 and the Nakanishi-type one b(+)(x)|phys〉 = 0, as stated in section 3.4. Going to
the nonlinear theory, the BRS-type condition takes over the same form:

QB|phys〉 = 0. (61)

However, it is not an easy task to find a nonlinear version of the Nakanishi-type condition:

“b(+)(x)”|phys〉 = 0. (62)

The problem is how to define “b(+)(x)” in the nonlinear case. In the linear case, b(x) satisfies the
free field equation

(
¤−m2

)
b(x) = 0. This fact allows to impose the physical-state condition of

the Nakanishi type b(+)(x)|phys〉 = 0. In the nonlinear case, however, b(x) obeys some nonlinear
equation. Setting up an auxiliary condition consistently in that case is still unsolved.

5. Summary and discussion
We have presented a possible nonlinear completion of massive gravity of the Fierz-Pauli type.
Physical implications of this model are under study.

This model has the smooth massless (m → 0) as well as the smooth flat-spacetime (κ → 0)
limits. In the flat-spacetime limit, it reduces to the BRS+Nakanishi extension of the PT (Fierz-
Pauli) model.

Finding a nonlinear version of the Nakanishi-type physical-state condition is still unsettled.
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