
Journal of Physics: Conference
Series

     

OPEN ACCESS

On some aspects of noncommutative pure Yang-
Mills theory
To cite this article: S Giller et al 2008 J. Phys.: Conf. Ser. 128 012003

 

View the article online for updates and enhancements.

You may also like
Gravity in extreme regions based on
noncommutative quantization of
teleparallel gravity
Ryouta Matsuyama and Michiyasu
Nagasawa

-

One loop renormalizability of
spontaneously broken gauge theory with a
product of gauge groups on
noncommutative spacetime: the U(1) ×
U(1) case
Yi Liao

-

Renormalizability of noncommutative
SU(N) gauge theory
Maja Buric, Dusko Latas and Voja
Radovanovic

-

This content was downloaded from IP address 3.135.200.211 on 06/05/2024 at 20:21

https://doi.org/10.1088/1742-6596/128/1/012003
https://iopscience.iop.org/article/10.1088/1361-6382/aacddc
https://iopscience.iop.org/article/10.1088/1361-6382/aacddc
https://iopscience.iop.org/article/10.1088/1361-6382/aacddc
https://iopscience.iop.org/article/10.1088/1126-6708/2002/04/042
https://iopscience.iop.org/article/10.1088/1126-6708/2002/04/042
https://iopscience.iop.org/article/10.1088/1126-6708/2002/04/042
https://iopscience.iop.org/article/10.1088/1126-6708/2002/04/042
https://iopscience.iop.org/article/10.1088/1126-6708/2002/04/042
https://iopscience.iop.org/article/10.1088/1126-6708/2006/02/046
https://iopscience.iop.org/article/10.1088/1126-6708/2006/02/046
https://iopscience.iop.org/article/10.1088/1126-6708/2006/02/046
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjssz1JXJX5Ghrd99INrhEeh7dNqqAJmB7eQRXK_Pgin8qCIdwMEv6uhtrDJPSvySCcG2TWbSOzn-Xr28OHtGtkwi11C98hkMb2kDwDbe1yInHj7aqywIYAsh14xcw3WbULcBvvpWWe7zKOdq3VqMCHe_y9sv1j6E772Kb-ernkSs24OFS1_gVmPgkO8sdZqT4JBcnu6Fx-oTtmnu5ujchsw4e1imzTKr4eGuNvHoZE5Om8QUUeYwzYc0dwLqkeQAKYO_kQsEgYhu6w5DkGarz2sxd-1hsDFdHrxsEH6C_NT1cMTefruOTeLGqLSKFf5ry0_vHp4MzP8dt8qBm0rU9v7m-hGv2A&sig=Cg0ArKJSzPjve4xB2wBx&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


On some aspects of nocommutative pure Yang-Mills

theory

Stefan Giller†, Cezary Gonera‡, Piotr Kosiński‡ and Pawe l Maślanka‡
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Abstract. Two types of gauge transformations of noncommutative pure gauge theory are
discussed. It is shown that Yang-Mills theory with the so called twisted gauge symmetry is
consistent provided it also enjoys the standard noncommutative ∗-gauge symmetry.

1. Introduction
The standard approach to gauge symmetry on noncommutative space-time [1,2,3,] basically
consists in replacing the product by the star one in both the definitions of gauge transformations
as well as their action on gauge potentials. This appears to be quite restrictive in a sense that
practically only star counterpart of U(N) group transformations close to form a group [3,4,5].
Such restrictions on gauge groups are absent in the so called twisted gauge transformations
approach [6-13] Here, contrary to the previous case, there is no star product involved in
the definitions of guge transformations and their action on fields. Noncommutativity of
transformations is reflected in modified Leibnitz rule. So, by construction, twisted gauge
transformations unlike standard ∗-ones impose rather mild restrictions on gauge groups.
However, it appears that twisted gauge theory is consistent provided it also posses the standard
noncommutative gauge symmetry. It is just an aim of this short note to show that, in general, the
current conservation in the theory with twisted gauge symmetry implies some constraints which
are not automatically fulfilled by virtue of field equations (more specifically, these constraints
follow by taking the divergence of field equations). If one demands no such constraints exist,
the range of gauge potentials must be enlarged so that the action exhibits also standard
noncommutative gauge symmetry [14].

The note starts with a flash definitions of noncommutative Yang-Mills theory and both
types of gauge transformations; standard noncommutative ones and twisted ones. Then the
consistency of theory with twisted gauge symmetry is discussed.

2. Noncommutative pure Yang-Mills theory
Noncommutative pure Yang-Mills theory is defined by the following action

S = −1
4

∫
d4xTr(Fµν ∗ Fµν) (1)
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where

Fµν ≡ ∂µAν − ∂νAµ − i[Aµ, Aν ]∗, [Aµ, Aν ]∗ ≡ Aµ ∗Aν −Aν ∗Aµ (2)

e
i
2
θµν∂xµ∂

y
νAµ(x)Aν(y) |x=y= m(F−1Aµ ⊗Aν) ≡ m∗(Aµ ⊗Aν)

m(Aµ ⊗Aν) = AµAν

F = e
−i
2
θµν∂µ⊗∂ν (3)

and Aµ(x) is N ×N matrix valued function.
This action can be considered as being obtained from usual commutative pure Yang-Mills

one by replacing ordinary product of fields by star product defined by eq.(3). Consequently,
ordinary commutators are replaced by corresponding ∗-ones given by eq. (2).
Varying the action with respect to gauge potentials gives the following field equations

∂µF
µν − i[Aµ, Fµν ]∗ = 0 (4)

These equations look as their commutative counterparts however one has to remember that
commutator is now ∗-one. It appears that it is possible to define two types of gauge
transformations which leave the action invariant. There are standard noncommutative gauge
transformations for gauge potentials belonging to u(N) Lie algebra and twisted gauge ones for
potentials belonging a priori to any Lie algebra.

3. Standard ∗-U∗(N) gauge transformations
Standard noncommutative gauge transformations are given by following equations

Aµ 7−→ A
′
µ = U∗ ∗Aµ ∗ U−1

∗ − i∂µU∗ ∗ U−1
∗

U∗(x) = e
iαa(x)Ta

∗ ≡ I + iαaTa +
i2

2
αa ∗ αbTaTb + ... (5)

where Ta ∈ u(N). Two points are really important here. The first is the use of ∗-product in
definition of gauge transformations as well as their action on fields. The second point related
to the first one is the observation that gauge transformations close to form a group provided
matrices Ta span u(N) Lie algebra. So practically, only unitary group U(N) can be ∗ gauged.

Now, invariance of the action S under infinitesimal ∗-gauge transformations

δAµ ≡ A
′
µ −Aµ = i[α,Aµ]∗ + ∂µα

δ∂νAµ = ∂νδAµ (6)

implies (via noncommutative counterpart of second Noether theorem) that

[Aµ,
δL

δAµ
]∗ + ∂ν [Aµ, F νµ]∗ = 0 (7)

∂µ
δL

δAµ
= i[Aµ,

δL

δAµ
]∗ (8)

where δL
δAµ
≡ ∂νF νµ − i[Aν , F νµ]∗ is the Euler - Lagrange expression.

Eq.(7) provides a conserved current jν ≡ [Aµ, F νµ]∗ , ∂µjµ = 0. The conservation of this
current (which can also be checked directly using field equations) is crucial for consistency of
the theory. In fact, eq.(8) confirms that no constraints on Aµ follow by taking divergence of
field equations.
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4. Twisted gauge transformations
Twisted gauge transformations and their action on fields are defined exactly as in ordinary
commutative situation i.e.

Aµ 7−→ A
′
µ = UAµU

−1 − i(∂µU)U−1

U(x) = eiα
a(x)Ta . (9)

Contrary to the first kind of transformations there is no ∗-product involved in these definitions.
However, an important assumption is added that derivatives entering ∗-products do not act on
gauge parameters. This assumption results in twisted Leibnitz rule (see eq(10) below) which
can be expressed in terms of twisted coproduct ∆F of α which explains the name of symmetry.

δ(ψ ∗ φ) = iαa(x)(Taψ ∗ φ+ ψ ∗ Taφ) = m∗(∆F (iα)ψ ⊗ φ)
∆F = F∆F−1 , ∆(iα) = iα⊗ I + I ⊗ iα (10)

The above twisted Leibnitz rule is given for functions transforming as matter fields. In the
case of gauge fields there would be an extra terms coming from derivative of gauge parameter
entering gauge potentials transformation rule.

5. Pure Yang - Mills theory with twisted gauge symmetry
By the very definition twisted gauge transformations impose rather mild restrictions on gauge
groups. So, a natural question arises whether it is possible to construct noncommutative gauge
theory with some compact Lie group G different from unitary one, playing the role of gauge
group and with gauge potentials belonging to a Lie algebra representation of G. To answer this
question it is convenient to select some N -dimensional unitary irreducible representation of G
(and the corresponding irreducible representation of g, denoted also by g) and to assume that
the gauge potential takes its values in g. The Lie algebra g is a subalgebra of u(N). The latter
viewed as linear space is equipped with the scalar product (A,B) ≡ Tr(AB) invariant under
the adjoint action of U(N). If Bi, i = 1, ..., a span an orthonormal bases in the orthogonal
complement g⊥ of g in u(N)( g⊥ = {B ∈ u(N);Tr(AB) = 0, A ∈ g}) then the condition that
the potential Aµ belongs to the representation g reads A ∈ g ⇐⇒ Tr(ABi) = 0, i = 1, ..., a.

To define Yang-Mills theory with twisted gauge group G, Lagrange multiplier method can be
used. The relevant action reads

S = −1
4

∫
d4xTr(Fµν ∗ Fµν) +

∫
d4xρµi Tr(AµBi) (11)

where ρµi (x) are the Lagrange multipliers and where it is assumed that the gauge potential Aµ
a priori takes its values in u(N).

Eq. (11) implies the following equations of motion

Tr(AµBi) = 0 (12)

∂µF
µν − i[Aµ, Fµν ]∗ + ρνiBi = 0, (13)

hence

ρνi = −Tr(Bi(∂µFµν − i[Aµ, Fµν ]∗)) (14)
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Eq.(13) means that in general, fν ≡ ∂µF
µν − i[Aµ, Fµν ]∗ ∈ g⊥ (in the case of ordinary

commutative gauge theory fµ ∈ g by construction and one deals with ordinary field equations
∂µF

µν − i[Aµ, Fµν ]∗ = 0, similarly, in standard (i.e. not twisted) approach to gauge theory on
noncommutative space-time g must basically be u(N) and g⊥ = 0; again one arrives at ordinary
form of field equations).

Due to antisymmetry of Fµν tensor the field eqs.(13) imply the followig consistency condition

∂ν(i[Aµ, Fµν ]∗ − ρνiBi) = 0 (15)

ie.

i

2
[∂νAµ − ∂µAν , Fµν ]∗ + i[Aµ, ∂νFµν ]∗ − ∂νρνiBi = 0. (16)

Using field equations, Jacobi identities and taking into account that ∂µAν − ∂νAµ = Fµν +
i[Aµ, Aν ]∗ eq.(16) can be rewritten in the form

[Aν , ρνiBi]∗ + ∂νρ
ν
iBi = 0 (17)

which finally implies

Tr(Γ[Aν , ρνiBi]∗) = 0 (18)

for any Γ ∈ g.
Now, ∗-commutator consists of two pieces, one proportional to matrix commutator and the

second one involving matrix anticommutator;

[Aν , ρνiBi]∗ =
1
2

({Aaν , ρνi }∗[Ta, Bi] + [Aaν , ρ
ν
i ]∗{Ta, Bi}). (19)

However, commutators of B′s and T ′s belong to orthogonal complement of Lie algebra g

[Ta, Bi] ∈ g⊥ (20)

(Eq.(20) results because if U ∈ G then U+Γ′U ∈ g and Tr(Γ′UBiU+) = Tr(U+Γ′UBi) = 0 so
that UBiU+ ∈ g⊥). Consequently, consistency condition (see eq.(18)) reads

Tr(Γ[Aν , ρνiBi]∗) = Tr(Γ[Aν , ρνi ]∗{Ta, Bi}) = 0 (21)

It is clear that eq.(21) does not produce any further constraints on Aµ provided {Ta, Bi} ∈ g⊥
but then eq.(20) would imply

TaBi ∈ g⊥ and BiTa ∈ g⊥ (22)

so that

ΣBi ∈ g⊥ and BiΣ ∈ g⊥ (23)

for each Σ belonging to the enveloping algebra U(g) of g which due to its assumed irreducibility
is an algebra MN of all N × N matrices (this is Burnside theorem). So, equations (23) imply
that orthogonal complement g⊥ of g is a two-sided ideal in MN . However, it is known (by
Wedderburn theorem) that MN has only two ideals: I = φ or I = MN . g⊥ = MN would imply
no gauge symmetry, so one is left with g⊥ = φ ie. g must be u(n) Lie algebra.

In this way one concludes that gauge theory with twisted gauge group G imposes no extra
constraints on gauge fields Aµ provided G is unitary group U(N). But then theory also enjoys
standard ∗-U∗(N) symmetry which controls consistency of the theory and provides conserved
currents jν ≡ [Aµ, F νµ]∗.
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