OPEN ACCESS

Fermion-fermion and boson-boson amplitudes: surprising similarities

To cite this article: V V Dvoeglazov 2008 J. Phys.: Conf. Ser. 128012002

View the article online for updates and enhancements

You may also like
A necessary and sufficient condition for the existence of simple closed geodesics on regular tetrahedra in spherical space A. A. Borisenko

ISOMETRIC IMMERSIONS, WITH FLAT NORMAL CONNECTION, OF DOMAINS of n-DIMENSIONAL LOBACHEVSKY SPACE INTO EUCLIDEAN SPACES. A MODEL OF A GAUGE FIELD Yu A Aminov

Simple closed geodesics on reqular
tetrahedra in Lobachevsky space A. A. Borisenko and D. D. Sukhorebska

Fermion-fermion and boson-boson amplitudes: surprising similarities

Valeri V. Dvoeglazov
Universidad de Zacatecas, Apartado Postal 636, Suc. UAZ, Zacatecas 98062, Zac., México
E-mail: valeri@planck.reduaz.mx

Abstract

Amplitudes for fermion-fermion, boson-boson and fermion-boson interactions are calculated in the second order of perturbation theory in the Lobachevsky space. An essential ingredient of the model is the Weinberg's $2(2 j+1)$ - component formalism for describing a particle of spin j. The boson-boson amplitude is then compared with the two-fermion amplitude obtained long ago by Skachkov on the basis of the Hamiltonian formulation of quantum field theory on the mass hyperboloid, $p_{0}^{2}-\mathbf{p}^{2}=M^{2}$, proposed by Kadyshevsky. The parametrization of the amplitudes by means of the momentum transfer in the Lobachevsky space leads to same spin structures in the expressions of T - matrices for the fermion case and the boson case. However, certain differences are found. Possible physical applications are discussed.

1. Introduction

The problem of correct description of quarkonium (the bound state of quark and antiquark - the mesons) and of barions were hot topics since long ago. However, we are now faced at the correct description of a bound state of spin-1 particles (and higher spins). Instead of developing other methods we suggest to think about the general methods of describing higher-spin particles (and their bound states) on an equal footing with fermions. The pioneer ideas have been proposed in refs. $[8,10]$. The amplitudes in the Lobachevsky space are calculated in the next Section.

2. Amplitudes

The scattering amplitude for the two-fermion interaction had been obtained in the 3-momentum Lobachevsky space [1] in the second order of perturbation theory long ago [2a,Eq.(31)]:

$$
\begin{align*}
& T_{V}^{(2)}(\mathbf{k}(-) \mathbf{p}, \mathbf{p})=-g_{v}^{2} \frac{4 m^{2}}{\mu^{2}+4 \mathfrak{æ}^{2}}-4 g_{v}^{2} \frac{\left(\sigma_{\mathbf{1}} \boldsymbol{æ}\right)\left(\sigma_{\mathbf{2}} \mathfrak{æ}\right)-\left(\sigma_{\mathbf{1}} \sigma_{\mathbf{2}}\right) \mathfrak{æ}^{\mathbf{2}}}{\mu^{2}+4 \mathfrak{æ}^{2}}- \\
& -\frac{8 g_{v}^{2} p_{0} æ_{0}}{m^{2}} \frac{i \sigma_{\mathbf{1}}[\mathbf{p} \times æ]+\mathbf{i} \sigma_{\mathbf{2}}[\mathbf{p} \times æ]}{\mu^{2}+4 æ^{2}}-\frac{8 g_{v}^{2}}{m^{2}} \frac{p_{0}^{2} æ_{0}^{2}+2 p_{0} æ_{0}(\mathbf{p} \cdot \boldsymbol{æ})-m^{4}}{\mu^{2}+4 æ^{2}}- \\
& -\frac{8 g_{v}^{2}}{m^{2}} \frac{\left(\sigma_{\mathbf{1}} \mathbf{p}\right)\left(\sigma_{\mathbf{1}} \mathfrak{æ}\right)\left(\sigma_{\mathbf{2}} \mathbf{p}\right)\left(\sigma_{\mathbf{2}} \mathfrak{æ}\right)}{\mu^{2}+4 \mathfrak{æ}^{2}}, \tag{1}
\end{align*}
$$

g_{v} is the coupling constant. The additional term (the last one) has usually not been taken into account in the earlier Breit-like calculations of two-fermion interactions. This consideration is
based on use of the formalism of separation of the Wigner rotations and parametrization of currents by means of the Pauli-Lubanski vector, developed long ago [3]. The quantities

$$
æ_{0}=\sqrt{\frac{m\left(\Delta_{0}+m\right)}{2}} \quad, \quad æ=\mathbf{n}_{\Delta} \sqrt{\frac{m\left(\Delta_{0}-m\right)}{2}}
$$

are the components of the 4 -vector of a momentum half-transfer. This concept is closely connected with a notion of the half-velocity of a particle [4]. The 4 -vector Δ_{μ} :

$$
\begin{align*}
\boldsymbol{\Delta} & =\boldsymbol{\Lambda}_{\mathbf{p}}^{-\mathbf{1}} \mathbf{k}=\mathbf{k}(-) \mathbf{p}=\mathbf{k}-\frac{\mathbf{p}}{\mathbf{m}}\left(\mathbf{k}_{\mathbf{0}}-\frac{\mathbf{k} \cdot \mathbf{p}}{\mathbf{p}_{\mathbf{0}}+\mathbf{m}}\right) \tag{2}\\
\Delta_{0} & =\left(\Lambda_{p}^{-1} k\right)_{0}=\left(k_{0} p_{0}-\mathbf{k} \cdot \mathbf{p}\right) / m=\sqrt{m^{2}+\boldsymbol{\Delta}^{2}} \tag{3}
\end{align*}
$$

can be regarded as the momentum transfer vector in the Lobachevsky space instead of the vector $\mathbf{q}=\mathbf{k}-\mathbf{p}$ in the Euclidean space. ${ }^{1}$ This amplitude had been used for physical applications in the framework of the Kadyshevsky's version of the quasipotential approach [1, 2].

On the other hand, in ref. [8] an attractive $2(2 j+1)$ component formalism for describing particles of higher spins has been proposed. As opposed to the Proca 4 -vector potentials which transform according to the $\left(\frac{1}{2}, \frac{1}{2}\right)$ representation of the Lorentz group, the $2(2 j+1)$ component functions are constructed via the representation $(j, 0) \oplus(0, j)$ in the Weinberg formalism. This description of higher spin particles is on an equal footing to the description of the Dirac spinor particle, whose field function transforms according to the $\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)$ representation. The $2(2 j+1)$ - component analogues of the Dirac functions in the momentum space are

$$
\begin{equation*}
\mathcal{U}(\mathbf{p})=\sqrt{\frac{M}{2}}\binom{D^{J}(\alpha(\mathbf{p})) \xi_{\sigma}}{D^{J}\left(\alpha^{-1 \dagger}(\mathbf{p})\right) \xi_{\sigma}} \tag{4}
\end{equation*}
$$

for the positive-energy states; and 2

$$
\begin{equation*}
\mathcal{V}(\mathbf{p})=\sqrt{\frac{M}{2}}\binom{D^{J}\left(\alpha(\mathbf{p}) \Theta_{[1 / 2]}\right) \xi_{\sigma}^{*}}{D^{J}\left(\alpha^{-1 \dagger}(\mathbf{p}) \Theta_{[1 / 2]}\right)(-1)^{2 J} \xi_{\sigma}^{*}} \tag{5}
\end{equation*}
$$

for the negative-energy states, ref. [5, p.107], with the following notations being used:

$$
\begin{equation*}
\alpha(\mathbf{p})=\frac{p_{0}+M+(\sigma \cdot \mathbf{p})}{\sqrt{2 M\left(p_{0}+M\right)}}, \quad \Theta_{[1 / 2]}=-i \sigma_{2} \tag{6}
\end{equation*}
$$

[^0]These functions obey the orthonormalization equations, $\mathcal{U}^{\dagger}(\mathbf{p}) \gamma_{00} \mathcal{U}(\mathbf{p})=M, M$ is the mass of the $2(2 j+1)$ - particle. The similar normalization condition exists for $\mathcal{V}(\mathbf{p})$, the functions of "negative-energy states".

For instance, in the case of spin $j=1$, one has

$$
\begin{align*}
& D^{1}(\alpha(\mathbf{p}))=1+\frac{(\mathbf{J} \cdot \mathbf{p})}{M}+\frac{(\mathbf{J} \cdot \mathbf{p})^{2}}{M\left(p_{0}+M\right)}, \tag{7}\\
& D^{1}\left(\alpha^{-1 \dagger}(\mathbf{p})\right)=1-\frac{(\mathbf{J} \cdot \mathbf{p})}{M}+\frac{(\mathbf{J} \cdot \mathbf{p})^{2}}{M\left(p_{0}+M\right)}, \tag{8}\\
& D^{1}\left(\alpha(\mathbf{p}) \Theta_{[1 / 2]}\right)=\left[1+\frac{(\mathbf{J} \cdot \mathbf{p})}{M}+\frac{(\mathbf{J} \cdot \mathbf{p})^{2}}{M\left(p_{0}+M\right)}\right] \Theta_{[1]}, \tag{9}\\
& D^{1}\left(\alpha^{-1 \dagger}(\mathbf{p}) \Theta_{[1 / 2]}\right)=\left[1-\frac{(\mathbf{J} \cdot \mathbf{p})}{M}+\frac{(\mathbf{J} \cdot \mathbf{p})^{2}}{M\left(p_{0}+M\right)}\right] \Theta_{[1]}, \tag{10}
\end{align*}
$$

$\left(\Theta_{[1 / 2]}, \Theta_{[1]}\right.$ are the Wigner operators for spin $1 / 2$ and 1 , respectively). Recently, much attention has been paid to this formalism [12].

In refs. $[5,8,13,14,15]$ the Feynman diagram technique was discussed in the above-mentioned six-component formalism for particles of spin $j=1$. The Lagrangian is the following one: ${ }^{3}$

$$
\begin{align*}
\mathcal{L} & =\nabla_{\mu} \bar{\Psi}(x) \Gamma_{\mu \nu} \nabla_{\nu} \Psi(x)-M^{2} \bar{\Psi}(x) \Psi(x)-\frac{1}{4} F_{\mu \nu} F_{\mu \nu}+ \\
& +\frac{e \lambda}{12} F_{\mu \nu} \bar{\Psi}(x) \gamma_{5, \mu \nu} \Psi(x)+\frac{e \kappa}{12 M^{2}} \partial_{\alpha} F_{\mu \nu} \bar{\Psi}(x) \gamma_{6, \mu \nu, \alpha \beta} \nabla_{\beta} \Psi(x) . \tag{11}
\end{align*}
$$

In the above formula we have $\nabla_{\mu}=-i \partial_{\mu} \mp e A_{\mu} ; F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ is the electromagnetic field tensor; A_{μ} is the 4 -vector of electromagnetic field; $\bar{\Psi}, \Psi$ are the six-component field functions of the massive $j=1$ Weinberg particle. The following expression has been obtained for the interaction vertex of the particle with the vector potential, ref. [13, 14]:

$$
\begin{equation*}
-e \Gamma_{\alpha \beta}(p+k)_{\beta}-\frac{i e \lambda}{6} \gamma_{5, \alpha \beta} q_{\beta}+\frac{e \kappa}{6 M^{2}} \gamma_{6, \alpha \beta, \mu \nu} q_{\beta} q_{\mu}(p+k)_{\nu} \tag{12}
\end{equation*}
$$

where $\Gamma_{\alpha \beta}=\gamma_{\alpha \beta}+\delta_{\alpha \beta} ; \gamma_{\alpha \beta} ; \gamma_{5, \alpha \beta} ; \quad \gamma_{6, \alpha \beta, \mu \nu}$ are the $6 \otimes 6$-matrices which have been described in ref. [16, 8]:

$$
\begin{align*}
& \gamma_{i j}=\left(\begin{array}{cc}
0 & \delta_{i j} \mathbb{1}-J_{i} J_{j}-J_{j} J_{i} \\
\delta_{i j} \mathbb{1}-J_{i} J_{j}-J_{j} J_{i} & 0 \\
\gamma_{i 4} & =\quad \gamma_{4 i}=\left(\begin{array}{cc}
0 & i J_{i} \\
-i J_{i} & 0
\end{array}\right) \quad, \quad \gamma_{44}=\left(\begin{array}{cc}
0 & \mathbb{1} \\
\mathbb{1} & 0
\end{array}\right)
\end{array}, \$\right. \text {, } \tag{13}
\end{align*}
$$

and

$$
\begin{align*}
\gamma_{5, \alpha \beta} & =i\left[\gamma_{\alpha \mu}, \gamma_{\beta \mu}\right]_{-} \tag{15}\\
\gamma_{6, \alpha \beta, \mu \nu} & =\left[\gamma_{\alpha \mu}, \gamma_{\beta \nu}\right]_{+}+2 \delta_{\alpha \mu} \delta_{\beta \nu}-\left[\gamma_{\beta \mu}, \gamma_{\alpha \nu}\right]_{+}-2 \delta_{\beta \mu} \delta_{\alpha \nu} \tag{16}
\end{align*}
$$

J_{i} are the spin matrices for a $j=1$ particle, e is the electron charge, λ and κ correspond to the magnetic dipole moment and the electric quadrupole moment, respectively.

[^1]In order to obtain the 4 -vector current for the interaction of a boson with the external field one can use the known formulas of refs. $[2,3]$, which are valid for any spin:

$$
\begin{gather*}
\mathcal{U}^{\sigma}(\mathbf{p})=\mathbf{S}_{\mathbf{p}} \mathcal{U}^{\sigma}(\mathbf{0}) \quad, \quad \mathbf{S}_{\mathbf{p}}^{-\mathbf{1}} \mathbf{S}_{\mathbf{k}}=\mathbf{S}_{\mathbf{k}(-) \mathbf{p}} \cdot \mathbf{I} \otimes \mathbf{D}^{\mathbf{1}}\left\{\mathbf{V}^{-\mathbf{1}}\left(\boldsymbol{\Lambda}_{\mathbf{p}}, \mathbf{k}\right)\right\} \tag{17}\\
W_{\mu}(\mathbf{p}) \cdot D\left\{V^{-1}\left(\Lambda_{p}, k\right)\right\}=D\left\{V^{-1}\left(\Lambda_{p}, k\right)\right\} \cdot\left[W_{\mu}(\mathbf{k})+\frac{p_{\mu}+k_{\mu}}{M\left(\Delta_{0}+M\right)} p_{\nu} W_{\nu}(\mathbf{k})\right] \tag{18}\\
k_{\mu} W_{\mu}(\mathbf{p}) \cdot D\left\{V^{-1}\left(\Lambda_{p}, k\right)\right\}=-D\left\{V^{-1}\left(\Lambda_{p}, k\right)\right\} \cdot p_{\mu} W_{\mu}(\mathbf{k}) \tag{19}
\end{gather*}
$$

W_{μ} is the Pauli-Lubanski 4-vector of relativistic spin. ${ }^{4}$ The matrix $D^{(j=1)}\left\{V^{-1}\left(\Lambda_{p}, k\right)\right\}$ is for spin 1:

$$
\begin{align*}
& D^{(j=1)}\left\{V^{-1}\left(\Lambda_{p}, k\right)\right\}=\frac{1}{2 M\left(p_{0}+M\right)\left(k_{0}+M\right)\left(\Delta_{0}+M\right)}\left\{[\mathbf{p} \times \mathbf{k}]^{2}+\right. \\
& \quad+\left[\left(p_{0}+M\right)\left(k_{0}+M\right)-\mathbf{k} \cdot \mathbf{p}\right]^{2}+2 i\left[\left(p_{0}+M\right)\left(k_{0}+M\right)-\mathbf{k} \cdot \mathbf{p}\right]\{\mathbf{J} \cdot[\mathbf{p} \times \mathbf{k}]\}- \\
& \left.\quad-2\{\mathbf{J} \cdot[\mathbf{p} \times \mathbf{k}]\}^{2}\right\} . \tag{23}
\end{align*}
$$

The formulas have been obtained in ref. [15]:

$$
\begin{align*}
\mathbf{S}_{\mathbf{p}}^{-\mathbf{1}} \gamma_{\mu \nu} \mathbf{S}_{\mathbf{p}} & =\gamma_{44}\left\{\delta_{\mu \nu}-\frac{1}{M^{2}} \chi_{[\mu \nu]}(\mathbf{p}) \otimes \gamma_{5}-\frac{2}{M^{2}} \Sigma_{[\mu \nu]}(\mathbf{p})\right\} \tag{24}\\
\mathbf{S}_{\mathbf{p}}^{-\mathbf{1}} \gamma_{\mathbf{5}, \mu \nu} \mathbf{S}_{\mathbf{p}} & =6 i\left\{-\frac{1}{M^{2}} \chi_{(\mu \nu)}(\mathbf{p}) \otimes \gamma_{5}+\frac{2}{M^{2}} \Sigma_{(\mu \nu)}(\mathbf{p})\right\} \tag{25}
\end{align*}
$$

where

$$
\begin{align*}
\chi_{[\mu \nu]}(\mathbf{p}) & =p_{\mu} W_{\nu}(\mathbf{p})+p_{\nu} W_{\mu}(\mathbf{p}) \tag{26}\\
\chi_{(\mu \nu)}(\mathbf{p}) & =p_{\mu} W_{\nu}(\mathbf{p})-p_{\nu} W_{\mu}(\mathbf{p}) \tag{27}\\
\Sigma_{[\mu \nu]}(\mathbf{p}) & =\frac{1}{2}\left\{W_{\mu}(\mathbf{p}) W_{\nu}(\mathbf{p})+W_{\nu}(\mathbf{p}) W_{\mu}(\mathbf{p})\right\} \tag{28}\\
\Sigma_{(\mu \nu)}(\mathbf{p}) & =\frac{1}{2}\left\{W_{\mu}(\mathbf{p}) W_{\nu}(\mathbf{p})-W_{\nu}(\mathbf{p}) W_{\mu}(\mathbf{p})\right\} \tag{29}
\end{align*}
$$

lead to the 4 - current of a $j=1$ Weinberg particle more directly: ${ }^{5}$

$$
\begin{equation*}
j_{\mu}^{\sigma_{p} \nu_{p}}(\mathbf{p}, \mathbf{k})=j_{\mu(S)}^{\sigma_{p} \nu_{p}}(\mathbf{p}, \mathbf{k})+j_{\mu(V)}^{\sigma_{p} \nu_{p}}(\mathbf{p}, \mathbf{k})+j_{\mu(T)}^{\sigma_{p} \nu_{p}}(\mathbf{p}, \mathbf{k}) \tag{35}
\end{equation*}
$$

${ }^{4}$ It is usually introduced because the usual commutation relation for spin is not covariant in the relativistic domain. The Pauli-Lubanski 4 -vector is defined as

$$
\begin{equation*}
W_{\mu}(\mathbf{p})=\left(\Lambda_{\mathbf{p}}\right)_{\mu}^{\nu} W_{\nu}(\mathbf{0}), \tag{20}
\end{equation*}
$$

where $W_{0}(\mathbf{0})=0, \mathbf{W}(\mathbf{0})=M \sigma / \mathbf{2}$. The properties are:

$$
\begin{equation*}
p^{\mu} W_{\mu}(\mathbf{p})=0, \quad W^{\mu}(\mathbf{p}) W_{\mu}(\mathbf{p})=-M^{2} j(j+1) \tag{21}
\end{equation*}
$$

The explicit form is

$$
\begin{equation*}
W_{0}(\mathbf{p})=(\mathbf{S} \cdot \mathbf{p}), \quad \mathbf{W}(\mathbf{p})=M \mathbf{S}+\frac{\mathbf{p}(\mathbf{S} \cdot \mathbf{p})}{p_{0}+M} \tag{22}
\end{equation*}
$$

${ }^{5} C f$. with a $j=1 / 2$ case:

$$
\begin{equation*}
\mathbf{S}_{\mathbf{p}}^{-1} \gamma_{\mu} \mathbf{S}_{\mathbf{k}}=\mathbf{S}_{\mathbf{p}}^{-1} \gamma_{\mu} \mathbf{S}_{\mathbf{p}} \mathbf{S}_{\mathbf{k}(-) \mathbf{p}} \mathbf{I} \otimes \mathbf{D}^{1 / 2}\left\{\mathbf{V}^{-1}\left(\boldsymbol{\Lambda}_{\mathbf{p}}, \mathbf{k}\right)\right\} \tag{30}
\end{equation*}
$$

$$
\begin{align*}
& j_{\mu}^{\sigma_{p} \nu_{p}}(\mathbf{p}, \mathbf{k})=-g_{S} \xi_{\sigma_{p}}^{\dagger}\left\{(p+k)_{\mu}\left(1+\frac{(\mathbf{J} \cdot \boldsymbol{\Delta})^{2}}{M\left(\Delta_{0}+M\right)}\right)\right\} \xi_{\nu_{p}}, \tag{36}\\
& j_{\mu(V)}^{\sigma_{p} \nu_{p}}(\mathbf{p}, \mathbf{k})=-g_{V} \xi_{\sigma_{p}}^{\dagger}\left\{(p+k)_{\mu}+\frac{1}{M} W_{\mu}(\mathbf{p})(\mathbf{J} \cdot \boldsymbol{\Delta})-\frac{\mathbf{1}}{\mathbf{M}}(\mathbf{J} \cdot \boldsymbol{\Delta}) \mathbf{W}_{\mu}(\mathbf{p})\right\} \xi_{\nu_{p}} \tag{37}\\
& j_{\mu(T)}^{\sigma_{p} \nu_{p}}(\mathbf{p}, \mathbf{k})=-g_{T} \xi_{\sigma_{p}}^{\dagger}\left\{-(p+k)_{\mu} \frac{(\mathbf{J} \cdot \boldsymbol{\Delta})^{\mathbf{2}}}{M\left(\Delta_{0}+M\right)}+\right. \tag{38}\\
&\left.\quad+\frac{1}{M} W_{\mu}(\mathbf{p})(\mathbf{J} \cdot \boldsymbol{\Delta})-\frac{\mathbf{1}}{\mathbf{M}}(\mathbf{J} \cdot \boldsymbol{\Delta}) \mathbf{W}_{\mu}(\mathbf{p})\right\} \xi_{\nu_{p}}
\end{align*}
$$

Next, let me now present the Feynman matrix element corresponding to the diagram of twoboson interaction, mediated by the particle described by the vector potential, in the form $[2,14]$ (read the remark in the footnote \# 1):

$$
\begin{align*}
& <p_{1}, p_{2} ; \sigma_{1}, \sigma_{2}\left|\hat{T}^{(2)}\right| k_{1}, k_{2} ; \nu_{1}, \nu_{2}>= \\
& \quad=\sum_{\sigma_{i p}, \nu_{i p}, \nu_{i k}=-1}^{1} D_{\sigma_{1} \sigma_{1 p}}^{\dagger}(j=1)\left\{V^{-1}\left(\Lambda_{\mathcal{P}}, p_{1}\right)\right\} D_{\sigma_{2} \sigma_{2 p}}^{\dagger}(j=1) \\
& \left.\quad \times V_{\sigma_{1 p}}^{\nu_{1 p} \nu_{2 p}}(\mathbf{k}(-) \mathbf{p}, \mathbf{p}) D_{\nu_{1 p}}^{(j=1)}\left\{\nu_{2}\right)\right\} \times \\
& \left.\quad \times \quad D_{\nu_{2 p} \nu_{2 k}}^{(j=1)}\left\{V^{-1}\left(\Lambda_{p_{1}}, k_{1}\right)\right\} D_{\nu_{1 k} \nu_{1}}^{(j=1)}\left\{\Lambda_{p_{2}}, k_{2}\right)\right\} D_{\nu_{2 k} \nu_{2}}^{(j=1)}\left\{V^{-1}\left(\Lambda_{\mathcal{P}}, k_{2}\right)\right\} \tag{39}
\end{align*}
$$

where

$$
\begin{equation*}
T_{\sigma_{1 p} \sigma_{2 p}}^{\nu_{1 p} \nu_{2 p}}(\mathbf{k}(-) \mathbf{p}, \mathbf{p})=\xi_{\sigma_{1 p}}^{\dagger} \xi_{\sigma_{2 p}}^{\dagger} T^{(2)}(\mathbf{k}(-) \mathbf{p}, \mathbf{p}) \xi_{\nu_{1 p}} \xi_{\nu_{2 p}} \tag{40}
\end{equation*}
$$

ξ^{\dagger}, ξ are the 3 -analogues of 2 -spinors. The calculation of the amplitude (40) yields ($p_{0}=$ $\left.-i p_{4}, \Delta_{0}=-i \Delta_{4}\right)$:

$$
\begin{align*}
& \hat{T}^{(2)}(\mathbf{k}(-) \mathbf{p}, \mathbf{p})=g^{2}\left\{\frac{\left[p_{0}\left(\Delta_{0}+M\right)+(\mathbf{p} \cdot \boldsymbol{\Delta})\right]^{2}-M^{3}\left(\Delta_{0}+M\right)}{M^{3}\left(\Delta_{0}-M\right)}+\right. \\
& +\frac{i\left(\mathbf{J}_{1}+\mathbf{J}_{2}\right) \cdot[\mathbf{p} \times \boldsymbol{\Delta}]}{\Delta_{0}-M}\left[\frac{p_{0}\left(\Delta_{0}+M\right)+\mathbf{p} \cdot \boldsymbol{\Delta}}{M^{3}}\right]+\frac{\left(\mathbf{J}_{1} \cdot \boldsymbol{\Delta}\right)\left(\mathbf{J}_{\mathbf{2}} \cdot \boldsymbol{\Delta}\right)-\left(\mathbf{J}_{\mathbf{1}} \cdot \mathbf{J}_{\mathbf{2}}\right) \boldsymbol{\Delta}^{\mathbf{2}}}{2 M\left(\Delta_{0}-M\right)}- \\
& \left.-\frac{1}{M^{3}} \frac{\mathbf{J}_{1} \cdot[\mathbf{p} \times \boldsymbol{\Delta}] \mathbf{J}_{2} \cdot[\mathbf{p} \times \boldsymbol{\Delta}]}{\Delta_{0}-M}\right\} . \tag{41}\\
& \mathbf{S}_{\mathbf{p}}^{-\mathbf{1}} \gamma_{\mu} \mathbf{S}_{\mathbf{p}}=\frac{\mathbf{1}}{\mathbf{m}} \gamma_{\mathbf{0}}\left\{\mathbb{1} \otimes \mathbf{p}_{\mu}+\mathbf{2} \gamma_{\mathbf{5}} \otimes \mathbf{W}_{\mu}(\mathbf{p})\right\}, \tag{31}\\
& \mathbf{S}_{\mathbf{p}}^{-\mathbf{1}} \sigma_{\mu \nu} \mathbf{S}_{\mathbf{p}}=-\frac{\mathbf{4}}{\mathbf{m}^{\mathbf{2}}} \mathbb{1} \otimes \boldsymbol{\Sigma}_{(\mu \nu)}(\mathbf{p})+\frac{\mathbf{2}}{\mathbf{m}^{\mathbf{2}}} \gamma_{\mathbf{5}} \otimes \chi_{(\mu \nu)}(\mathbf{p}) . \tag{32}
\end{align*}
$$

Of course, the product of two Lorentz boosts is not a pure Lorentz transformation. It contains the rotation, which describes the Thomas spin precession (the Wigner rotation $\left.V\left(\Lambda_{\mathbf{p}}, \mathbf{k}\right) \in S U(2)\right)$). And, then,

$$
\begin{equation*}
j_{\mu}^{\sigma_{p} \nu_{p}}(\mathbf{k}(-) \mathbf{p}, \mathbf{p})=\frac{1}{m} \xi_{\sigma_{p}}^{\dagger}\left\{2 g_{v} æ_{0} p_{\mu}+f_{v} æ_{0} q_{\mu}+4 g_{\mathcal{M}} W_{\mu}(\mathbf{p})(\sigma \cdot æ)\right\} \xi_{\nu_{p}} \quad, \quad\left(g_{\mathcal{M}}=g_{v}+f_{v}\right) \tag{33}
\end{equation*}
$$

The indices \mathbf{p} indicate that the Wigner rotations have been separated out and, thus, all spin indices have been "resetted" on the momentum p. One can re-write [2b] the electromagnetic current (33):

$$
\begin{equation*}
j_{\mu}^{\sigma_{p} \nu_{p}}(\mathbf{k}, \mathbf{p})=-\frac{e m}{æ_{0}} \xi_{\sigma_{p}}^{\dagger}\left\{g_{\mathcal{E}}\left(q^{2}\right)(p+k)^{\mu}+g_{\mathcal{M}}\left(q^{2}\right)\left[\frac{1}{m} W_{\mu}(\mathbf{p})(\sigma \cdot \boldsymbol{\Delta})-\frac{\mathbf{1}}{\mathbf{m}}(\sigma \cdot \boldsymbol{\Delta}) \mathbf{W}_{\mu}(\mathbf{p})\right]\right\} \xi_{\nu_{p}} \tag{34}
\end{equation*}
$$

$g_{\mathcal{E}}$ and $g_{\mathcal{M}}$ are the analogues of the Sachs electric and magnetic form factors. Thus, if we regard $g_{S, T, V}$ as effective coupling constants depending on the momentum transfer one can ensure ourselves that the forms of the currents for a spinor particle and those for a $j=1$ boson are the same (with the Wigner rotations separated out).

We have assumed $g_{S}=g_{V}=g_{T}$ above. The expression (41) reveals the advantages of the $2(2 j+1)$ - formalism, since it looks like the amplitude for the interaction of two spinor particles with the substitutions

$$
\frac{1}{2 M\left(\Delta_{0}-M\right)} \Rightarrow \frac{1}{\Delta^{2}} \quad \text { and } \quad \mathbf{J} \Rightarrow \sigma .
$$

The calculations hint that many analytical results produced for a Dirac fermion could be applicable to describing a $2(2 j+1)$ particle. Nevertheless, an adequate explanation is required for the obtained difference. You may see that

$$
\begin{equation*}
\frac{1}{\Delta^{2}}=\frac{1}{2 M\left(\Delta_{0}-M\right)}-\frac{1}{2 M\left(\Delta_{0}+M\right)} \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
(p+k)_{\mu}(p+k)^{\mu}=2 M\left(\Delta_{0}+M\right) \tag{43}
\end{equation*}
$$

Hence, if we add an additional diagramm of another channel $(\mathbf{k} \rightarrow-\mathbf{k})$, we can obtain the full coincidence in the T-matrices of the fermion-fermion interaction and the boson-boson interaction. But, of course, one should take into account that there is no the Pauli principle for bosons, and additional sign " - " would be related to the indefinite metric.

3. Conclusions

The conclusions are: The main result of this paper is the boson-boson amplitude calculated in the framework of the $2(2 j+1)$ - component theory. The separation of the Wigner rotations permits us to reveal certain similarities with the $j=1 / 2$ case. Thus, this result provides a ground for the conclusion: if we would accept the description of higher spin particles on using the Weinberg $2(2 j+1)$ - scheme many calculations produced earlier for fermion-fermion interactions mediated by the vector potential can be applicable to processes involving higher-spin particles. Moreover, the main result of the paper gives a certain hope at a possibility of the unified description of fermions and bosons. One should realize that all the above-mentioned is not surprising. The principal features of describing a particle on the basis of relativistic quantum field theory are not in some special representation of the group representation, $(1 / 2,0) \oplus(0,1 / 2)$, or $(1,0) \oplus(0,1)$, or $(1 / 2,1 / 2)$, but in the Lorentz group itself. However, certain differences between denominators of the amplitudes are still not explained in full.

Several works dealing with phenomenological description of hadrons in the $(j, 0) \oplus(0, j)$ framework have been published $[17,18,19]$.

Acknowledgments

This paper is based on the talks given at the 5th International Symposium on "Quantum Theory and Symmetries", July 22-28, 2007, Valladolid, Spain and the 10th Workshop "What comes beyond the Standard Model?', July 17-27, 2007, Bled, Slovenia. I am grateful to participants of recent conferences for discussions.

References

[1] Kadyshevsky V G 1964 ZhETF 46 654, 872 [1964 JETP 19 443, 597]
1968 Nuovo Cim. 55A 233
1968 Nucl. Phys. B6 125
Kadyshevsky V G, Mir-Kasimov R M and Skachkov N B 1972 Fiz. Elem. Chast. At. Yadra 2635 [1972 Sov. J. Part. Nucl. 2 69]
[2] Skachkov N B 1975 TMF 22213 [1975 Theor. Math. Phys. 22 149]
1975 ibid. 25313 [1975 Theor. Math. Phys. 25 1154]
Skachkov N B and Solovtsov I L 1978 Fiz. Elem. Chast. At. Yadr. 95 [1978 Sov. J. Part. and Nucl. 9 1]
[3] Shirokov Yu M 1951 ZhETF 21748

1954 DAN SSSR 99737
1957 ZhETF 33 1196, 1208 [1958 Sov. Phys. JETP 6 919, 929]
1958 ZhETF 351005 [1959 Sov. Phys. JETP 8 703]
Chou Kuang Chao and Shirokov M I 1958 ZhETF 341230 [1958 Sov. Phys. JETP 7 851]
Cheshkov A A and Shirokov Yu M 1962 ZhETF 42144 [1962 Sov. Phys. JETP 15 103]
1963 ZhETF 441982 [1963 Sov. Phys. JETP 17 1333]
Cheshkov A A 1966 ZhETF 50144 [1966 Sov. Phys. JETP 23 97]
Kozhevnikov V P, Troitskiŭ V E, Trubnikov S V and Shirokov Yu M 1972 Teor. Mat. Fiz. 1047
[4] Chernikov N A 1957 ZhETF 33541 [1958 Sov. Phys. JETP 6 422]
1973 Fiz. Elem. Chast. At. Yadra 4773
[5] Novozhilov Yu V 1971 Vvedenie v teoriyu elementarnykh chastitz. (Moscow, Nauka, 1971); [English translation: Introduction to Elementary Particle Theory (Pergamon Press, Oxford, 1975)]
[6] Faustov R N 1973 Ann. Phys. (USA) 78176
[7] Dvoeglazov V V et al. 1991 Yadern. Fiz. 54658 [1991 Sov. J. Nucl. Phys. 54 398]
[8] Weinberg S 1964 Phys. Rev. B133 1318
1964 ibid. 134882
1969 ibid. 1811893
[9] Wigner E P 1962 In Group Theoretical Concepts and Methods in Elementary Particle Physics. ed. F. Gürsey. (Gordon and Breach, 1962)
[10] Sankaranarayanan A and Good Jr R H 1965 Nuovo Cim. 361303
1965 Phys. Rev. 140B 509
Sankaranarayanan A 1965 Nuovo Cim. 38889
[11] Ahluwalia D V, Johnson M B and Goldman T 1993 Phys. Lett. B316 102
Ahluwalia D V and Goldman T 1993 Mod. Phys. Lett. A8 2623
[12] Dvoeglazov V V 1998 Int. J. Theor. Phys. 371915
2003 Turkish J. Phys. 2735
2006 Int. J. Modern Phys. B20 1317
[13] Hammer C L, McDonald S C and Pursey D L 1968 Phys. Rev. 1711349
Tucker R H and Hammer C L 1971 Phys. Rev. D3 2448
Shay D and Good Jr R H 1969 Phys. Rev. 1791410
[14] Dvoeglazov V V and Skachkov N B, 1984 JINR Communications P2-84-199, in Russian 1987 ibid. P2-87-882, in Russian.
[15] Dvoeglazov V V and Skachkov N B 1988 Yadern. Fiz. 481770 [1988 Sov. J. of Nucl. Phys. 48 1065]
[16] Barut A O, Muzinich I and Williams D 1963 Phys. Rev. 130442
[17] Dvoeglazov V V and Khudyakov S V 1994 Izvestiya VUZov:fiz. No. 9110 [1994 Russian Phys. J. 37 898].
[18] Dvoeglazov V V 1994 Rev. Mex. Fis. Suppl. (Proc. XVII Oaxtepec Symp. on Nucl. Phys., Jan. 4-7, 1994, México) 40352
[19] Dvoeglazov V V, Khudyakov S V and Solganik S B 1998 Int. J. Theor. Phys. 371895
Dvoeglazov V V and Khudyakov S V 1998 Hadronic J. 21507

[^0]: ${ }^{1}$ I keep a notation and a terminology of ref. [2]. In such an approach all particles (even in the intermediate states) are on the mass shell (but, spurious particles present). The technique of construction of the Wigner matrices $D^{J}(A)$ can be found in ref. [5, p.51,70, English edition]. In general, for each particle in interaction one should understand under 4-momenta p_{i}^{μ} and $k_{i}^{\mu}(i=1,2)$ their covariant generalizations, $\breve{p}_{i}^{\mu}, \breve{k}_{i}^{\mu}$, e.g., refs. [3, 6, 7]:

 $$
 \begin{aligned}
 \breve{\mathbf{k}}=\left(\boldsymbol{\Lambda}_{\mathcal{P}}^{-1} \mathbf{k}\right) & =\mathbf{k}-\frac{\mathcal{P}}{\sqrt{\mathcal{P}^{2}}}\left(\mathbf{k}_{\mathbf{0}}-\frac{\mathcal{P} \cdot \mathbf{k}}{\mathcal{P}_{\mathbf{0}}+\sqrt{\mathcal{P}^{2}}}\right), \\
 \breve{k}_{0} & =\left(\Lambda_{\mathcal{P}}^{-1} k\right)_{0}=\sqrt{m^{2}+\breve{\mathbf{k}}^{2}}
 \end{aligned}
 $$

 with $\mathcal{P}=p_{1}+p_{2}, \Lambda_{\mathcal{P}}^{-1} \mathcal{P}=(\mathcal{M}, \mathbf{0})$. However, we omit the circles above the momenta in the following, because in the case under consideration we do not miss physical information if we use the corresponding quantities in c.m.s., $\mathbf{p}_{1}=-\mathbf{p}_{2}=\mathbf{p}$ and $\mathbf{k}_{1}=-\mathbf{k}_{2}=\mathbf{k}$.
 ${ }^{2}$ When setting $\mathcal{V}(\mathbf{p})=S_{[1]}^{c} \mathcal{U}(\mathbf{p}) \equiv \mathcal{C}_{[1]} \mathcal{K} \mathcal{U}(\mathbf{p}) \sim \gamma_{5} \mathcal{U}(\mathbf{p})$, like the Dirac $j=1 / 2$ case we have other type of theories $[9,10,11] . S_{[1]}^{c}$ is the charge conjugation operator for $j=1 . \mathcal{K}$ is the operation of complex conjugation.

[^1]: ${ }^{3}$ In the following I prefer to use the Euclidean metric because this metric got application in a lot of papers on the $2(2 j+1)$ formalism.

