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Abstract. The optimal control problems for the stationary magnetohydrodynamic equations
under inhomogeneous mixed boundary conditions for a magnetic field are considered. The role
of control in control problems under study is played by normal component of the magnetic field
on the part of the boundary. The existence of optimal solution is proved and optimality system
for considered extremum problem is obtained.

1. Introduction. Statement of the boundary value problem
Control problems for models of magnetic hydrodynamics of viscous electric conducting fluids play
an important role in a number of applications [1, 2]. In this paper we study control problems for
the stationary model of magnetic hydrodynamics, considered under mixed boundary conditions
for the electromagnetic field.

Let Ω be a bounded domain of the space R3 with boundary Σ = ∂Ω consisting of two parts
Σν and Στ . We will consider following system of the stationary magnetohydrodynamic equations
of viscous incompressible fluid

−ν∆u + (u · ∇)u +∇p− æ curl H×H = f , div u = 0, (1)

ν1curl H− ρ−1
0 E + æH× u = ν1j, div H = 0, curl E = 0, (2)

together with the following inhomogeneous boundary conditions:

u|Σ = 0, H · n|Στ = q, H× n|Σν = 0, E× n|Στ = k. (3)

Here u is the velocity vector, H and E are magnetic and electric fields, respectively, p = P/ρ0,
where P is the pressure, ρ0 = const is a fluid density, æ = µ/ρ0, ν1 = 1/ρ0σ = æνm, ν and νm
are constant kinematic and magnetic viscousity coefficients, σ is a constant conductivity, µ is a
constant magnetic permeability, n is the outer normal to Σ, j is the current density. Below we
will refer to problem (1)–(3) for given functions f , j,k and q as Problem 1. We note that all the
quantities in (1)–(3) are dimensional and their physical dimensions are defined in terms of SI
units. Physically the boundary conditions for the electromagnetic field in (3) correspond to the
situation when the part Σν of the boundary Σ is a perfect insulator.

In the particular case when Σν = ∅ the boundary conditions (3) for the magnetic field
take the form H · n|Σ = q, E× n|Σ = k. The corresponding boundary value and extremum
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problems for model (1), (2) were studied by a number of authors (see, for example [3–13].
Beginning from 2014, the authors published papers [14–16] devoted to the analysis of the
solvability of boundary value problems for model (1), (2) considered under mixed (homogeneous
or inhomogeneous) boundary conditions for the electromagnetic field. Further, authors’ papers
[17, 18] were published, in which the study of control problems for model (1), (2) in some
particular cases was started. Continuing the studies begun in [17, 18], we formulate below the
control problem for model (1), (2) in which the boundary function q ∈ Hs(Στ ) where s ∈ [0, 1/2]
plays the role of control. We study the solvability of the optimal control problem and derive an
optimality system describing the necessary conditions of extremum.

2. Function spaces. The preliminary results
As in [15, 16, 17, 18] we begin with describing the main functional spaces. Below we will use
the Sobolev spaces Hs(D), s ∈ R, H0(D) ≡ L2(D), where D denotes domain Ω, its boundary
Σ or open nonempty subset Σ0 ⊂ Σ. Corresponding spaces of vector–functions are denoted
by Hs(D)3 and L2(D)3. The inner products and norms in the spaces Hs(D) and Hs(D)3 are
denoted by (·, ·)s,D and ‖ ·‖s,D. The inner products and norms in L2(Ω) and L2(Ω)3 are denoted
by (·, ·) and ‖ · ‖Ω. By Hs(Σ) or Hs(Σ0) at s ≥ 0 we denote the usual trace spaces of the
space Hs+1/2(Ω) over Σ or over proper (non empty) open subset Σ0 of Σ. By H−s(Σ) and
H−s(Σ0) we denote the dual spaces of Hs(Σ) and Hs(Σ0), respectively, in the case when Σ0 is
a surface without boundary. By 〈·, ·〉s,Σ, 〈·, ·〉s,Σ0 we denote the duality pairing between H−s(Σ)
and H−s(Σ), H−s(Σ0) and H−s(Σ0) respectively.

As in [20, 21] we assume that the following conditions to Ω are satisfied:
(i) Ω is a bounded domain in R3 and the boundary ∂Ω is the union of a finite number of

disjoint closed C2 surfaces, each surface having finite surface area;
(ii) Στ is nonempty open subset of ∂Ω with M + 1 disjoint nonempty open components

{σ0, σ1, ..., σM} and there is a positive d0 such that dist d(σi, σj) ≥ d0 > 0 when i 6= j and
M ≥ 1. The boundary of each σi is either empty or C1,1 curve. We set Σν = ∂Ω \ Στ .

Let D(Ω) be the space of infinitely differentiable compactly supported functions in Ω, H1
0 (Ω)

be the closure of D(Ω) in H1(Ω), V = {v ∈ H1
0 (Ω)3 : div v = 0}, H−1(Ω)3 = (H1

0 (Ω)3)∗,
L2

0(Ω) = {p ∈ L2(Ω) : (p, 1) = 0}, H1(Ω,Στ ) = {ϕ ∈ H1(Ω) : ϕ|Στ = 0}, CΣτ0(Ω)3 := {v ∈
C0(Ω)3 : v · n|Στ = 0, v × n|Σν = 0}. In addition to the spaces introduced above we will use the
spaces H(div,Ω) = {v ∈ L2(Ω)3 : div v ∈ L2(Ω)}, H(curl,Ω) = {v ∈ L2(Ω)3 : curl v ∈ L2(Ω)3},
H0(curl,Ω) = {v ∈ H(curl,Ω) : curl v = 0} and the space HDC(Ω) = H(div,Ω) ∩ H(curl,Ω),
equipped with the Hilbert norm ‖u‖2DC := ‖u‖2Ω + ‖div u‖2Ω + ‖curl u‖2Ω.

Let HDCΣτ (Ω) be the closure of CΣτ0(Ω)3∩H1(Ω)3 with respect to the norm ‖ · ‖DC . Let
HΣτ (Ω) = {h ∈ L2(Ω)3 : div h = 0, curl h = 0 in Ω, h · n|Στ = 0, h× n|Σν = 0},
HΣν (Ω) = {h ∈ L2(Ω)3 : div h = 0, curl h = 0 in Ω, h · n|Σν = 0, h× n|Στ = 0},
VΣτ (Ω) = {v ∈ HDCΣτ (Ω) : div v = 0 in Ω} ∩ HΣτ (Ω)⊥, Hs = H1

0 (Ω)3 × VΣτ (Ω).
A number of properties of the function spaces introduced above has been proved in [20, 21].

We formulate these properties as the following theorem.
Theorem 2.1. We assume that conditions (i), (ii) hold. Then:
1) the spaces HΣτ (Ω) and HΣν (Ω) are finite dimensional;
2) HDCΣτ (Ω) ⊂ H1(Ω)3 and the norm ‖ · ‖DC is equivalent to the norm ‖ · ‖1,Ω;
3) for all h ∈ VΣτ (Ω) the coercitivity inequality ‖curl h‖2 ≥ δ1‖h‖21,Ω holds where constant δ1

depends on Ω and Στ ;
4) the orthogonal decomposition L2(Ω)3 = ∇H1(Ω,Στ )⊕ curlHDCΣτ (Ω)⊕HΣν (Ω) holds and

curlHDCΣτ (Ω) ≡ curlVΣτ (Ω).
Along with spaces HDC(Ω) and H0(curl,Ω) we will use their subspaces

Hs+1/2
div (Ω) := {h ∈ Hs+1/2(Ω) : curl h ∈ L2(Ω)3, div h = 0} ∩ HΣτ (Ω)⊥,
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Hs+1/2
div (Ω) := {h ∈ Hs+1/2

div (Ω) : h× n|Σν = 0},

H0
Στ (curl,Ω) := {e ∈ H0(curl,Ω) : e× n|Στ ∈ L2

T (Στ )}

equipped with natural norms

‖h‖Hs+1/2
div

(Ω)
= ‖h‖s+1/2,Ω + ‖curl h‖Ω, ‖e‖H0

Στ
(curl,Ω) := ‖e‖Ω + ‖e× n‖Στ .

The spaces Hs+1/2
div (Ω,Σν) and H0

Στ
(curl,Ω) will be used below for describing properties of the

magnetic and electric fields, respectively.
The following technical lemma holds (see for details [6, 20, 21]).
Lemma 2.1. Under condition (i) there exist constants δi = δi(Ω) > 0 and γi = γi(Ω) > 0,

i = 0, 1, β > 0, depending on Ω such that

(∇v,∇v) ≥ δ0‖v‖21,Ω ∀v ∈ H1
0 (Ω)3, (curl Ψ, curl Ψ) ≥ δ1‖Ψ‖21,Ω ∀Ψ ∈ VΣτ (Ω),

|((u · ∇)v,w)| ≤ γ0‖u‖1,Ω‖v‖1,Ω‖w‖1,Ω,

|(curlu× v,w)| ≤ γ1‖u‖1,Ω‖v‖s+1/2,Ω‖w‖1,Ω ∀u,w ∈ H1(Ω)3,v ∈ Hs+1/2(Ω)3,

sup
v∈H1

0 (Ω)3,v 6=0

−(divv, p)/‖v‖1,Ω ≥ β‖p‖Ω ∀p ∈ L2
0(Ω). (4)

Furthermore, the following identities hold true:

((u · ∇)v,w) = −((u · ∇)w,v) ∀u ∈ H1(Ω)3 : div u = 0, (v,w) ∈ H1
0 (Ω)3 ×H1(Ω)3,

(rot Ψ×H,u) = (H× u, rot Ψ) = −(rot Ψ× u,H) ∀Ψ,u ∈ H1(Ω)3,H ∈ Hs+1/2(Ω)3.

Let the following conditions hold in addition to (i), (ii):
(iii) f ∈ H−1(Ω)3, j ∈ L2(Ω)3, k ∈ (γτ |Στ )H0

Στ
(curl,Ω).

In what follows we will deal with a weak form of Problem 1. To this end we multiply the first
equation in (1) by v ∈ H1

0 (Ω)3, the first equation in (2) by curl Ψ where Ψ ∈ VΣτ (Ω), integrate
over Ω, apply Green’s formulas, add the obtained results and make use of the identity [14]

(E, curl Ψ) =

∫
Στ

(E× n|Στ ) ·ΨTdσ = (k,ΨT )Στ = (E0, curl Ψ) ∀Ψ ∈ VΣτ (Ω). (5)

As a result we arrive at the weak form of Problem 1:

ν(∇u,∇v) + ν1(curlH, curlΨ) + ((u · ∇)u,v) + æ[(curlΨ×H,u)− (curlH×H,v)]−

−(divv, p) = 〈f ,v〉+ (ν1j, curl Ψ) + ρ−1
0 (k,Ψ)Στ ∀(v,Ψ) ∈ Hs, (6)

divu = 0 in Ω, H · n = q on Στ . (7)

We will refer below to any triple (u,H, p) ∈ H1
0 (Ω)3×Hs+1/2

div (Ω,Σν)×L2
0(Ω) satisfying (6), (7)

as a weak solution to Problem 1.
The identity (6) does not contain electric field E ∈ H0

Στ
(curl,Ω) which was eliminated with

the help of (5). However, using a condition on a boundary vector k in (iii) vector E can be
reconstructed uniquely from triple (u,H, p) satisfying (6) so that the first equation in (2) holds
a.e. in Ω (see details in [15]).

Let in addition to (i)–(iii) the following condition holds:
(iv) Στ ∩ Σν = ∅.
The following theorem from [15] provides the existence of a weak solution to Problem 1:
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Theorem 2.2. Under assumptions (i)–(iv) for any q ∈ Hs(Στ ), s ∈ [0, 1/2], there exists a
weak solution (u,H, p) to Problem 1 and the following estimates hold:

‖u‖1,Ω ≤Mu, ‖H‖Hs+1/2
div

(Ω)
≤MH, ‖p‖Ω ≤Mp, (8)

wheree Mu,MH,Mp are continuous nondecreasing functions of ‖f‖−1,Ω, ‖j‖Ω, ‖k‖Στ , ‖q‖s,Στ .
If, besides, functions f , j,k, q are small (or “viscosities” ν, νm are large) in the sense

γ0Mu + γ1(
√

æ/2)MH < δ0ν, γ1Mu + γ1(
√

æ/2)MH < δ1νm, (9)

where constants δ0, δ1, γ0, γ1 are introduced in Lemma 2.1, then the weak solution is unique.
The proof of Problem 1’ solvability essentially uses the following Lemma [22]:
Lemma 2.2. Let under assumptions (i), (ii) and (iv) q ∈ Hs(Στ ) at s ∈ [0, 1/2]. Then

there exists a unique function H0 ∈ Hs+1/2
div (Ω,Σν) such that curl H0 = 0, div H0 = 0 in Ω,

H0 · n = q on Στ , and ‖H0‖s+1/2,Ω≤CΣ‖q‖s,Στ , where constant CΣ does not depend on q.

3. Boundary control problem
Let us formulate control problem for Problem 1. For this purpose we divide the set of all data
of Problem 1 into two groups: the first contains the functions f , j and k while the second one
contains the function q. We assume that q can be changed in some subset Ks where

(j) Ks ⊂ Hs(Στ ), 0 ≤ s ≤ 1/2, is nonempty convex closed set.

Setting Xs = H1
0 (Ω)3×Hs+1/2

div (Ω,Σν)×L2
0(Ω) and Ys = H−1(Ω)3×VΣτ (Ω)∗×L2

0(Ω)×Hs(Στ ),
x = (u,H, p) ∈ Xs we introduce an operator F ≡ (F1, F2, F3) : Xs ×Ks → Ys by

〈F1(x), (v,Ψ)〉 = ν(∇u,∇v) + ν1(curlH, curlΨ) + ((u · ∇)u,v)− (divv, p)+

+æ[(curlΨ×H,u)− (curlH×H,v)]− 〈f ,v〉 − (ν1j, curl Ψ)− ρ−1
0 (k,ΨT )Στ ∀(v,Ψ) ∈ Hs,

〈F2(x, r)〉 = −(divu, r) ∀r ∈ L2
0(Ω), F3(x, q) = H · n− q ∈ Hs(Στ )

and rewrite the weak form (6), (7) of Problem 1 in the form of the operator equation

F (x, q) = F (u,H, p, q) = 0. (10)

Let I : Xs → R be a weakly lower semicontinuous cost functional. Consider the following
optimal control problem:

J(x, q) = (µ0/2)I(x) + (µ1/2)‖q‖2s,Στ → inf, F (x, q) = 0, (x, q) ∈ Xs ×Ks. (11)

Here µ0 > 0 and µ1 ≥ 0 are nonnegative parameters.
As the cost functional we choose one of the following:

I1(v) = ‖v − vd‖2Q, I2(H) = ‖H−Hd‖2Q, I3(p) = ‖p− pd‖2Q. (12)

Here the function vd ∈ L2(Q)3 denotes some desired velocity field given in a subdomain Q ⊂ Ω.
Functions Hd ∈ L2(Q)3 and pd ∈ L2(Q) have similar sense for the magnetic field or pressure.
The set of possible pairs for problem (11) is denoted by Zad = {(x, q) ∈ Xs × Ks : F (x, q) =
0, J(x, q) <∞}.

Let in addition to (i) the following conditions hold:
(jj) µ0 > 0, µ1 ≥ 0 and Ks is bounded set, or µ0 > 0, µ1 > 0 and I is bounded below.
By analogy with [18], the following theorem concerning with solvability of (11) is proved.
Theorem 3.1. Let under assumptions (i)–(iv) and (j), (jj), I : Xs → R be a weakly lower

semicontinuous functional, where s ≥ 0, and set Zad be nonempty. Then problem (11) has at
least one solution (x, q) ∈ Xs ×Ks.



MPCM2019

IOP Conf. Series: Journal of Physics: Conf. Series 1268 (2019) 012005

IOP Publishing

doi:10.1088/1742-6596/1268/1/012005

5

4. Derivation of the optimality system
The following stage of study of problem (11) is a derivation of an optimality system describing
necessary conditions of extremum.

Let X∗s = H−1(Ω)3×Hs+1/2
div (Ω,Σν)∗×L2

0(Ω) and Y ∗s = H1
0 (Ω)3×VΣτ (Ω)×L2

0(Ω)×Hs(Στ )∗ be
the duals of spaces Xs and Ys where s > 0. It is easy to show that the Fréchet partial derivative
with respect to x from operator F : Xs → Ys at any point (x̂, q̂) ≡ (û, Ĥ, p̂, q̂) ∈ Xs × Ks

is a linear continuous operator F ′x(x̂, q̂) : Xs → Ys that maps each element (w,h, r) ∈ Xs

to an element F ′x(x̂, q̂)(w,h, r) = (ŷ1, ŷ2, ŷ3) ∈ Ys where the elements ŷ1 ∈ H∗s , ŷ2 ∈ L2
0(Ω),

ŷ3 ∈ Hs(Στ ) are defined by triples (û, Ĥ, p̂) and (w,h, r) from relations

〈ŷ1, (v,Ψ)〉 = ν(∇w,∇v) + ν1(curl h, curlΨ) + ((û · ∇)w,v) + ((w · ∇)û,v)− (div v, r)+

+æ[(curlΨ× h, û) + (curlΨ× Ĥ,w)− (curl h× Ĥ,v)− (curl Ĥ× h,v)] ∀(v,Ψ) ∈ Hs,

〈ŷ2, r〉 = −(div w, r) ∀r ∈ L2
0(Ω), ŷ3 = h · n|Στ . (13)

By F ′x(x̂, q̂)∗ : Y ∗s→X∗s we denote operator adjoint to F ′x(x̂, q̂). Following to the general theory
of smooth-convex extremum problems [23] we introduce an element y∗ = ((ξ, η), σ, ζ) ∈ Y ∗s to
which we will refer as adjoint state and define the Lagrangian L : Xs ×Ks ×R × Y ∗s → R by
formula L(x, q, λ0,y

∗) = λ0J(x, q) + 〈y∗, F (x, q)〉Y ∗
s ×Ys ≡ λ0J(x, q) + 〈F1(x, q), (ξ, η)〉H∗

s×Hs +
(F2(x, q), σ) + 〈ζ, F3(x, q)〉s,Στ .

The following theorem holds.
Theorem 4.1. Let under assumptions (i)–(iv) and (j), (jj) at s ∈ [0, 1/2], the element

(x̂, q̂) ≡ (û, Ĥ, p̂, q̂) ∈ Xs ×Ks be a local minimizer in problem (11) and let the cost functional
I be continuously Fréchet differentiable with respect to state x in point x̂. Then there exists a
nonzero Lagrange multiplier (λ0,y

∗) = (λ0, ξ, η, σ, ζ) ∈ R+ × Y ∗s such that the Euler–Lagrange
equation takes place F ′x(x̂, q̂)∗y∗ = −λ0J

′
x(x̂, q̂) in X∗s , which is equivalent to relations

ν(∇w,∇ξ) + ν1(curlh, curlη) + ((û · ∇)w, ξ) + ((w · ∇)û, ξ)− (divw, σ)+

+æ[(curlη × Ĥ,w) + (curlη × h, û)]− æ[(curlĤ× h, ξ) + (curlh× Ĥ, ξ)] + 〈ζ,h · n〉s,Στ =

= −λ0(µ0/2)(〈I ′u(x̂),w〉+ 〈I ′H(x̂),h〉) ∀(w,h) ∈ H1
0 (Ω)3 ×Hs+1/2

div (Ω,Σν), (14)

(divξ, r) = λ0(µ0/2)(I ′p(x̂), r) ∀r ∈ L2
0(Ω), (15)

and minimum principle L(x̂, q̂, λ0,y
∗) ≤ L(x̂, q, λ0,y

∗) ∀q ∈ Ks holds, which is equivalent to

λ0µ1(q̂, q − q̂)s,Στ − 〈ζ, q − q̂〉s,Στ ≥ 0 ∀q ∈ Ks. (16)

If, besides, (9) holds for all q ∈ Ks, then any nontrivial Lagrange multiplier (λ0,y
∗), satisfying

(14)–(16) is regular, i.e. it has the form (1,y∗) and is determined uniquely for given pair (x̂, q̂).
Proof. According to [23, p. 79], to prove Theorem 4.1, it suffices to show that F ′x(x̂, q̂) :

Xs → Ys is a Fredholm operator. By virtue of (13), the operator F ′x(x̂, q̂) : Xs → Ys can be

presented as F ′x = Φ + Φ̂ ≡ (Φ1,Φ2,Φ3) + (Φ̂1, 0, 0) where Φ2(x) = div w, Φ3(x) = h · n|Στ and

operators Φ1, Φ̂1 : Xs → H∗s := H−1(Ω)3 × VΣτ (Ω)∗ act by formulae

〈Φ1(w,h, r), (v,Ψ)〉=ν(∇w,∇v) + ν1(curl h, curlΨ) + ((û · ∇)w,v)+

+æ[(curlΨ× Ĥ,w)− (curl h× Ĥ,v)],

〈Φ̂1(w,h, r), (v,Ψ)〉 = ((w · ∇)û,v) + æ[(curl Ψ× h, û)− (curl Ĥ× h,v)].
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Let us show that the operator Φ : Xs → Ys is an isomorphism. For this purpose it is enough
to show that for any triple (F, θ, q) ∈ H∗s × ×L2

0(Ω) × Hs(Στ ) there exists a unique solution
(w,h, p) ∈ Xs of problem

ν(∇w,∇v) + ν1(curl h, curlΨ) + ((û · ∇)w,v)− (div v, p)+

+æ[(curlΨ× Ĥ,w)− (curl h× Ĥ,v)] = 〈F, (v,Ψ)〉 ∀(v,Ψ) ∈ Hs, (17)

div w = θ in Ω, h · n = q on Στ . (18)

that continuously depends on (F, q, θ). The existence of the solution of (17), (18) and it’s
continuous dependence on (F, q, θ) is proved using the scheme proposed in [6]. In order to
prove the uniqueness let us assume that there exists two solutions (wi,hi, pi) ∈ Xs, i = 1, 2, of
problem (17), (18). Then the difference w = w1 −w2, h = h1 − h2 and p = p1 − p2 belongs to
V × VΣτ (Ω)× L2

0(Ω) and satisfies

ν(∇w,∇v) + ν1(curl h, curlΨ) + ((û · ∇)w,v)+

+æ[(curlΨ× Ĥ,w)− (curl h× Ĥ,v)]− (div v, p) = 0 ∀(v,Ψ) ∈ Hs, (19)

div w = 0 in Ω, h · n = 0 on Στ . (20)

Setting v = w, Ψ = h in (19), we arrive at the relation ν(∇w,∇w) + ν1(curl h, curl h) = 0. By
virtue of Lemma 2.1 it implies that w = 0 and h = 0 or w1 = w2 and h1 = h2 in Ω. Then,
from (19), taking into account (4), we derive that p1 = p2 in Ω. Thus, we proved that the
operator Φ : Xs → Ys is surjective and invertible. Then, by Banach theorem, operator Φ is

an isomorphizm. Finally, from compactness of embeddings H1/2+s
div (Ω) ⊂ L3(Ω)3 at s > 0, and

H1(Ω)3 ⊂ L4(Ω)3 and estimates of Lemma 2.1 follows the continuity and compactness of the

operator Φ̂.
Let us prove the regularity of the multiplier (λ0,y

∗), i.e. that λ0 6= 0. To this end we denote
by y∗ ≡ (ξ, η, σ, ζ) an arbitrary solution of system (14)–(16) at λ0 = 0. Setting w = ξ, h = η
and r = σ in this system we come to relation

ν(∇ξ,∇ξ) + ν1(curl η, curl η) + ((ξ · ∇)û, ξ) + æ[(curl η × η, û)− (curl Ĥ× η, ξ)] = 0. (21)

Arguing as in [7] one can easily prove using (21) that ξ = 0 and η = 0 in Ω under condition (9).
In this case, from (14), (15) follows that

−(div w, σ) + 〈ζ,h · n〉s,Στ = 0 ∀w ∈ H1
0 (Ω)3, h ∈ H1/2+s

div (Ω,Σν). (22)

Choosing as h an arbitrary function from VΣτ (Ω) ⊂ H1/2+s
div (Ω,Σν) we derive from (22) that

(div w, σ) = 0 for all w ∈ H1
0 (Ω)3. By (4) this identity means that σ = 0 a.e. in Ω. Then (22)

transforms to 〈ζ,h · n〉s,Στ = 0 for all h ∈ H1/2+s
div (Ω,Σν). This means that ζ = 0 in Hs(Στ )∗

and therefore y∗ = 0. Uniqueness of the regular Lagrange multiplier (1,y∗) under conditions
(9) follows from Fredholm property of the operator F ′x(x̂, q̂).

Relations (6), (7) for the main state (u,H, p) together with identities (14), (15) for the
adjoint state (ξ, η, σ, ζ) and variational inequality (16) for control q̂ form an optimality system
for problem (11). We emphasize that the optimality system plays an important role in the study
of the optimal solutions’ properties. In particular, based on the analysis of the optimality system
one can derive stability estimates of the optimal solutions (see, e.g., [8]) The authors propose to
do this in future paper for all three cost functionals defined in (12).
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