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Abstract. Spoken language understanding is an important part of the human-machine dialogue 

system, intent detection is a sub-task of spoken language understanding, and it is very 

important. The accuracy of intent detection is directly related to the performance of semantic 

slot filling, and it is helpful to the following research of the dialogue system. Considering the 

difficulty of intent detection in human-machine dialogue system, the traditional machine 

learning method cannot understand the deep semantic information of user’s discourse. This 

paper mainly analyzes, compares and summarizes the deep learning methods applied in the 

research of intent detection in recent years, and further considers how to apply deep learning 

model to multi-intent detection task, so as to promote the research of multi-intent detection 

methods based on deep neural network. 

1. Introduction 

With the advent of the era of artificial intelligence, more and more intelligent products have been 

widely used in our daily life, such as emotional care robot, personal phone assistant Siri, voice 

assistants Google Now and intelligent chat robot Xiao Bing from Microsoft Research Asia, etc. These 

intelligent dialogue systems bring a lot of convenience to users’ lives. The dialogue system is mainly 

composed of five parts: Automatic Speech Recognition (ASR), Spoken Language Understanding 

(SLU), Dialogue Management (DM), Dialogue Generation (DG) and Text to Speech (TTS) [1], as 

shown in figure 1. In order to better understand the user’s expression, and then feedback the correct 

information for the user, spoken language understanding plays an extremely important role. Intent 

Detection (ID), as a sub-module of spoken language understanding, is also the key to human-machine 

dialogue system. Traditional spoken language understanding is mainly divided into two sub-tasks -- 

intent detection and semantic slot filling. Because early research was constrained by application 

scenarios, data, and computing power, most spoken language understanding was limited to the 

specific domain.However, with technological innovation and the emergence of the multi-domain 

dialogue system, the current spoken language understanding is often divided into three tasks -- domain 

recognition, intent detection and semantic slot filling [2]. 

In a dialogue system, intent detection is crucial. The intent is the will of the user, that is, what the 

user wants to do. Intents are sometimes referred to as “Dialog Act” [3], which is the action of 

information that users share in the dialogue and are constantly updated. The intent is generally named 

“verb + noun”, such as query weather, book a hotel, etc. Intent detection, also known as intent 

classification, classifies user utterances into previously defined intent categories according to the 

domains and intents involved in user utterances [4]. 
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Figure 1.Schematic diagram of the dialogue system. 

Nowadays, in the application process of the human-machine dialogue system, users may have 

multiple intents in different occasions, which will trigger multiple domains in the human-machine 

dialogue system, including task-oriented vertical domains and chats, etc. In the dialogue system, only 

when the user’s topic domain is clearly defined, can the specific needs of the user be correctly 

analyzed, otherwise it will lead to wrong intent detection behind. Figure 2 is an instance diagram of 

the application of three tasks in spoken language understanding. When a user enters a query, it first 

needs to clear the user’s input text belonging to a topic domain to “train” or “flight”, due to the intent 

category is finer-grained than the topic domain, so we need to determine the user’s intent, which is 

booking the ticket or refunding the ticket or querying time, according to the user’s specific semantic 

information. And the semantic slot filling can also help the user intent judgment. 

 

Figure 2.An instance diagram of intent detection. 

2. The difficulties ofintent detection 

2.1. Lack of data sources 

With the development of artificial intelligence technology, large Internet companies have launched 

chat robots. Due to the less user experience, it is difficult for most researchers to obtain the chat text 

between users and robots, which leads to the limited amount of dialogue text to be studied, which has 

become a major problem faced by intent detection tasks [5]. In the actual process of intent detection, 

there are very few intent texts with annotations and they are very difficult to obtain, which also brings 

challenges to the research and development of intent detection [6]. 

2.2. The irregularity of user expression 

In the chat system, the user’s intent text is generally characterized by colloquial expression, short 

sentences and broad content, which makes it difficult to identify the user’s intent. For example, “I 

want to look for a dinner place”, the corresponding intent of this colloquial daily expression is 
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“looking for a restaurant”, so the colloquial intent text makes the domain topic is not clear, which is 

not conducive to the identification of user intent. For “Hanting”, this semantically poor expression of 

the intent text, although “Hanting” often appears with “Hotel”, it is very difficult for the machine to 

identify the user’s topic domain as “Hotel”. For “I want to book a ticket”, which may be to book air 

tickets, train tickets, bus tickets and so on. Due to the user’s expression is too broad, the machine 

cannot give feedback to the user in time. 

2.3. Implicit intent detection 

With the continuous expansion of the application scope of the human-machine dialogue system, there 

are more and more ways to express intent. According to the types of expression, intents can be divided 

into explicit intents and implicit intents [7]. Explicit intents refer to that the user clearly points out his 

or her intent requirements in text content, including topic domain, intent category and so on. Implicit 

intent refers to the fact that the user does not have clear intent requirements and it is necessary to infer 

the user’s real intent by analyzing the user’s potential intent [8]. Such as explicit intent text “Book a 

hotel near the People’s Park for one night” and implicit intention text “I’m going to Shenzhen for two 

days next week”. Although their intent is booking a hotel, the latter needs to judge the user’s potential 

intent and speculate on the user’s true intent. Therefore, implicit intent detection without explicit topic 

domain and category information is very difficult in the intent detection task. 

2.4. Multiple intents detection 

Multi-intent detection is similar to multi-label classification, but it is different from multi-label 

classification. Multi-label classification usually deals with long text, while multi-intent detection 

mainly deals with short text. How to detect multiple intents of users in short text is another difficulty 

of intent detection. In the process of multi-intent detection, we need to pay attention to three problems. 

Firstly, how to find that the user’s intent text contains multiple intents; Secondly, how to determine the 

number of intents contained in the user’s intent text; Finally, it is worth thinking about how to 

accurately identify users’ various intents. 

3. Main methods of intent detection 

3.1. Traditional intent detection methods 

In recent years, most scholars regard intent detection as a Semantic Utterance Classification (SUC) 

problem [9]. Traditional intent detection mainly includes rule-based template semantic recognition 

method [10] (1993) and classification algorithm based on statistical features [11,12] (2002-2014). 

Although the rule-based template matching method does not require a lot of training data, it can 

guarantee the accuracy of detection, but it cannot solve the problem of high cost of template 

reconstruction caused by changing the intent category. However, the method based on statistical 

feature classification needs to extract the key features of corpus text. However, the method of 

manually extracting features is not only costly, but also the accuracy of features cannot be guaranteed, 

which also leads to data sparse problems. Common methods include Naive Bayes [13] (1998), 

Adaboost [14] (2000), Support Vector Machine(SVM) [15] (2003) and logistic regression [16] (2007). 

Considering the non-standard and ambiguous information of user text, the traditional intent detection 

method cannot accurately understand the deep semantics of user text. How to accurately identify the 

user’s real intent,  this is still a very challenging task. 

3.2. The current mainstream methods 

With the development of deep learning, more and more scholars apply word embedding, Convolution 

Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM) 

Network, Gated Recurrent Unit (GRU), Attention Mechanism and Capsule Networks to intent 

detection task. Compared with the traditional machine learning methods, the deep learning model has 

a great improvement in detection performance. 
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3.2.1. Intent detection based on word embedding. In recent years, word embedding is gradually used 

in semantic analysis tasks, due to the use of original lexical features will lead to data sparse problems, 

and continuous representation learning can solve data sparse problems [17] (2003). Kim et al. [18] 

(2015) took word embedding as lexical features for intent classification. Compared with the traditional 

word bag model, the intent classification method based on word embedding has better representational 

ability and domain extensibility for different classification contents. Considering the insufficiency of 

semantic information of word embedding, Kim et al. [19] (2016) used semantic vocabulary dictionary 

information to rich word embedding and improved the semantic representation of intent text. This 

model achieved good results, and show that rich word embedding will be helpful to improve the 

performance of intent detection. 

3.2.2. Intent detection based on convolution neural network. CNN was originally used for image 

processing [20]. With the emergence of word embedding technology, CNN has been widely used in 

the field of natural language processing and achieved good research results. Kim et al. [21] (2014) 

attempted to use CNN in text classification tasks and achieved very ideal results. Hashemi et al. [22] 

(2016) used CNN to extract text vector representation as query classification feature to identify the 

user’s intents earch query. Compared with traditional artificial feature extraction method, this method 

not only reduces a lot of feature engineering, but also obtains deeper feature representation. However, 

CNN has representational limitations. 

3.2.3. Intent detection based on recurrent neural networks and their variants. RNN is different from 

CNN, it represents a word sequence and can learn semantic information of word order according to the 

context. Bhargava A[23] (2013) reduced the error rate of intent detection by incorporating context 

information into intent detection tasks, indicating that context information is beneficial to intent 

detection. A simple RNN has problems such as gradient explosion or gradient disappearance, which 

cannot well simulate long-term dependence. 

LSTM [24] (1997) can solve this problem by introducing a memory unit into the RNN structure, 

which can control the information to be retained and forgotten. This model is often also used to solve 

the problem of intent detection. Ravuri et al. [25] (2015) proposed using RNN and LSTM to solve the 

problem of intent classification. Experiments on Air Travel Information System (ATIS) dataset show 

that the error rate of intent detection of LSTM is 1.48% lower than that of RNN. The main reason is 

that LSTM has a good ability to modeling the temporal relationship of text, and has a good memory 

function for the input of long text.  

GRU is an improvement of the LSTM model [26], which has the ability to retain information on 

long sequences and can learn contextual semantic information. For intent detection task, Ravuri et al. 

[27] (2016) used GRU and LSTM to comprehensively compare the performance of intent detection on 

ATIS and Cortana datasets. Experiments show that GRU and LSTM have almost the same 

performance in the intent detection task, but GRU has fewer parameters and the model is simpler. 

3.2.4. Intent detection based on the combination of deep learning models. Considering the advantages 

and disadvantages of various deep learning models, most researchers combine the deep learning 

models with different advantages to classify users’ intents. Qian et al. [8] (2017) proposed a travel 

consumption intent detection model based on Convolutional-LSTM, which took advantage of CNN 

can extract intent text features at a deeper level and LSTM can build the temporal relationship of text, 

and achieved good performance. Yu et al. [28] (2018) aimed at the problem of data sparse caused by 

the short text, and proposed a multi-turn dialogue intent detection model based on Biterm Topic Model 

(BTM) and Bidirectional Gated Recurrent Unit (BGRU). This combined model has achieved good 

results in the users’ medical intent detection, and is superior to the performance of literature [8]. 

Huang [29] (2018) proposed the Character-CNN-BGRU deep learning combined model. The 

combined model not only makes use of the character-based method to make the list of words smaller, 

but also can solve the problem of unknown words, coupled with CNN can extract local features of the 
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intent text and BGRU can guarantee the temporal relationship of text, highlighting the advantages of 

the combined model in the intent detection task. However, the structure of the combined model is 

complex and the training time is long, how to simplify the combined model is a problem worth 

considering. 

3.2.5. Intent detection based on Bidirectional Long short-term Memory (BLSTM) self-attention model. 

With the development of deep learning models, the expression of various sentence level vectors has 

emerged, such as: using the maximum pooling or average pooling of CNN to obtain sentence vectors, 

using the hidden state or the final hidden state of RNN to create sentence representation, etc. Lin et al. 

[30] (2017) proposed an improved method by introducing a self-attention mechanism to extract 

sentence representation. Sentence vectors were represented by two-dimensional matrices and different 

semantic information of sentences was represented by multiple vectors. The model is implemented on 

BLSTM, and obtains the sentence vector representation by weighted summation of the hidden state of 

LSTM, and realizes intent classification. This model can obtain various semantic information of 

sentence through the self-attention mechanism, which is helpful to the research of multi-intent 

detection. 

Figure3 shows the self-attention model, as shown in figure3(a), assume that the input sequence is

( , ,..., )1 2
n dS w w w Rn
  , input S into BLSTM, and the hidden state of the front and rear terms of 

the t  word is calculated as follows: 

( , )                                                               (1)1

( , )                                                               (2)1

LSTMh w ht t t

LSTMh w ht t t

 

 

 

If the number of LSTM hidden cells is k , and the hidden state of the preceding and trailing items is 

connected to get ht , and 2k
h Rt , 2n kH R

 represents the set of all hidden states ht , and 

( , ,..., )1 2H h h hn . 

The self-attention weight matrix is expressed as: 

max( tanh( ))                                                (3)
2 1

Ta soft W W Hs s
  

As shown in figure3(b), 2
1

m k
W Rs

  and 1
2

m
W Rs

  are the self-attention weight matrix. m

is the number of hidden cells in self-attention model, which is a super parameter and can be set 

arbitrarily. 2T k n
H R

 is the transpose matrix of H . 1 na R
 can be obtained by calculation, and 

finally normalization by softmax function. Each dimension in a  represents the attention of the 

corresponding words in the sentence. So the intent text vector can be expressed as: d a H  , then 

1 2kd R
 . 

If we want to extract r semantic features from the intent text, we need r  self-attention headers to 

extract semantic features. Then 
2

r m
W Rs

 , gets self-attention weight matrix r nA R
 , and the 

final intent text vector can be expressed as : D A H  , then 2r kD R
 . 

3.2.6. Intent detection based on the capsule network model. The concept of “capsule” was first 

proposed by Hinton et al. [31] (2011) to solve the representation limitations of CNN. A capsule 

contains the vector representation of a group of neurons, the direction of the vector represents the 

entity attributes, and the length of the vector represents the probability of the existence of the entity. 

Sabour et al. [32] (2017) proposed the capsule network, replacing CNN scalar output feature detector 

with vector output capsule, and replacing max-pooling with protocol routing. Compared with the 

original CNN, the capsule network will maintain the accurate location information of the entity in the 
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region. Therefore, Zhao et al. [33] (2018) used capsule network for text classification tasks for the first 

time, and proposed three dynamic routing strategies to improve the performance of dynamic routing 

process, and reduced the interference of noise (stop words and words unrelated to categories) capsules. 

Experiments on six standard datasets show that the capsule network performs well in text 

classification tasks, and the capsule network also has good performance in multi-label text 

classification tasks. 

In the intent detection task, Xia et al. [34] (2018) proposed an intent capsule model based on 

capsule network, which utilizes the advantages of capsule model in the text modeling to process text 

hierarchically. As shown in figure 4, first of all, using the method of literature [30] in the intent text 

extracted semantic features with the self-attention mechanism, named semantic vector. Since different 

users express the same intent in different ways, but they contribute more to one intent than others, the 

appropriate contribution of each semantic is dynamically allocated by using dynamic routing 

mechanism to aggregate them into a higher level prediction vector, that is, the semantic expression of 

intent, and classify intents. The model achieves good results in the intent detection task. 

 

Figure 3.Self-attention model diagram [30]. 

 

Figure 4.Intent detection process diagram based on intent capsule. 



AIACT 2019

IOP Conf. Series: Journal of Physics: Conf. Series 1267 (2019) 012059

IOP Publishing

doi:10.1088/1742-6596/1267/1/012059

7

 

 

 

 

 

 

3.2.7. Intent detection based on the method of joint recognition. With the continuous research and 

improvement of intent detection methods, considering that single-task research is prone to error 

propagation due to its independent model, some scholars have proposed a joint model of semantic slot 

filling and intent detection. Li et al. [35] (2017) conducted a joint model of intent detection and 

semantic slot filling through triangular chain conditional random fields. Compared with the cascade 

model that takes semantic slot filling result as intent detection feature, the joint model performs well in 

the intent detection task, highlighting the relevance between them. Liu et al. [36] (2016) captured 

important semantic components of sentences by adding attention mechanism on the hidden layer of 

bidirectional recurrent neural network (BRNN), and improved the accuracy of intent detection. In 

ATIS dataset, the error rate of intent detection of BRNN based on attention mechanism is 2.35%. 

Through the joint experiment of semantic slot filling and intent detection, the error rate of intent 

detection in ATIS dataset is reduced to 1.79%. It can be seen that semantic slot filling is helpful for 

intent detection. 

3.2.8. Multiple intent detection methods. For multi-intent detection tasks, Yang et al. [37](2018) relied 

on syntax analysis to determine whether the user’s intent text contains multiple intents, then 

determined the number of intent by using the word frequency-inverse document frequency (TF-IDF) 

and trained word embedding to calculate the matrix distance. Finally, classified the intents by 

combining syntactic features and CNN, and determined the user’s multiple intents. However, there are 

few studies on multi-intent detection based on deep learning model, so this is a direction worth 

studying. 

4. The evaluation methods of intent detection 

4.1. The evaluation method of single intent detection 

At present, intent detection is generally regarded as a semantic discourse classification problem, so the 

performance of intent detection method is evaluated by the one which used in text classifier [28]. That 

is, accuracy, recall rate, F1-score and error rate, classification speed, etc. 

(1) Accuracy:                                                         (4)
TP TN

Accuracy
TP TN FP FN




  
 

    (2) Precision: Pr                                                                            (5)
TP

ecision
TP FP




 

(3) Recall: Re                                                                                    (6)
TP

call
TP FN




 

(4) F1-score:
2 Pr Re

1                                                      (7)
Pr Re

ecision call
F score

ecision call

 
 


 

Among them, TP indicates True Positive, that is, class A samples were correctly classified into 

class A. TN indicates True Negative, which do not belong to the class A samples were classified 

correctly into classes other than class A. FP indicates False positives, which does not belong to the 

class A samples were classified erroneously into class A. FN indicates False negatives, which belongs 

to the class A samples were erroneously into the classes other than class A. 

4.2. The evaluation method of multiple intent detection 

The evaluation method of multi-intent detection is different from that of single intent detection, it 

needs to judge the types of intent prediction in sentences. This paper adopts evaluation index of 

literature [37]. Suppose that there are N multiple intent samples recorded as ( , )x Aii , 0 i N  . Ai

denotes the set of correct intent results of the sample set. ( )SBi xi


 
denotes the set of predicted intent 

results of the sample set to be tested. The specific calculation formulas are as follows: 
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(1) Multi-Intent Accuracy(MIA): 
1

                                         (8)

1

N A Bi i
MIA

N A Bi ii


 



 

(2) Multi-Intent Precision(MIP):
1

                                           (9)

1

N A Bi i
MIP

N Bii


 



 

(3) Multi-Intent Recall(MIR):
1

                                              (10)

1

N A Bi i
MIR

N Aii


 



 

5. Comparison of experimental performance results 

Literature [34] has experimented with various deep learning models mentioned above on SNIPS 

English dataset and Commercial Voice Assistant (CVA) Chinese dataset, and the performance results 

of intent detection were shown in table 1: 

Table 1.Performance comparison results of various deep learning models on intent detection tasks. 

Model SNIPS 

(Five kinds of intents) 

CVA 

(80 kinds of intents) 

Accuracy    F1 Accuracy    F1 

CNN 0.9595    0.9595 0.8223    0.8210 

RNN 0.9516    0.9518 0.8286    0.8275 

GRU 0.9535    0.9534 0.8239    0.8216 

LSTM 0.9569    0.9569 0.8319    0.8306 

BLSTM 0.9501    0.9502 0.8428    0.8419 

Self-attention BLSTM 0.9524    0.9522 0.8521    0.8513 

Intent Capsnet 0.9621    0.9620 0.9088    0.9023 

According to the results in the table, BLSTM can make full use of context to represent sentence 

features, which is better than the local feature representation of CNN, and the self-attention model can 

more fully capture the deep semantic information of sentences. Due to intent capsule can not only 

capture the deep semantics of intent text, but also ensure the exact location of semantic information of 

intent text, its intent detection performance is better than other deep neural network models. 

6. Summary and prospect 

This paper mainly introduces the difficulty and method of intent detection in the human-machine 

dialogue system. It summarizes and compares the intent detection methods of the deep learning model. 

Traditional intent detection methods can’t understand user’s intent in depth, while the deep learning 

model shows its advantages. The capsule network model achieves good performance in the intent 

detection task, and also has a good effect on multi-label classification. The self-attention model can 

extract various semantic features of sentences in the process of intent detection, thus contributing to 

the research of multi-intent detection. 

At present, intent detection is not only applied in various fields such as e-commerce, travel 

consumption, medical treatment and chat, but also applied to network intrusion, network fraud and air 

target combat fields, to provide the guarantee for network security problems. Traditional dialogue 

systems are mainly oriented at single intent detection in specific fields. With the increasingly frequent 

interaction between humans and machines, the users’ discourse expression is not limited to only one 

intent. How to accurately identify multiple intents of users will be our next research work. 

Acknowledgments 
This work is partially supported by the National Natural Science Foundation of China (Nos. 

61562068,11704229,61640204,61806103); Natural Science Foundation of Inner Mongolia (No. 



AIACT 2019

IOP Conf. Series: Journal of Physics: Conf. Series 1267 (2019) 012059

IOP Publishing

doi:10.1088/1742-6596/1267/1/012059

9

 

 

 

 

 

 

2017MS0607); Subproject of Mongolian Language Informatization of Inner Mongolia People’s 

Committee(MW-2014-MGYWXXH-01); Youth Innovation and entrepreneurship talents of Inner 

Mongolia “grassland talents” project; Inner Mongolia science and technology planning project 

(research and development operation of online interactive learning platform of Mongolian language 

MOOC and analysis and research of national education big data); Graduate Innovation Fund of Inner 

Mongolia Normal University (CXJJS18112). 

References 

[1] Hongshen Chen, Xiaorui Liu, Dawei Yin, et al. A survey on dialogue systems: recent advances 

and new frontiers[J]. Acm Sigkdd Explorations Newsletter, 2017, 19(2):25-35. 

[2] Tur G. Spoken Language Understanding: Systems for extracting semantic information from 

speech[D]. NewYork, NY: John Wiley and Sons, 2011. 

[3] Austin J A. How to do things with words[M]// Harvard University Press. Cambridge: 1962. 

[4] Celikyilmaz A, Hakkani-Tur D, Tur G, et al. Exploiting distance based similarity in topic 

models for user intent detection[C]// Automatic Speech Recognition & Understanding. IEEE, 

2011:425-430. 

[5] Bingfeng Luo, Yansong Feng, Zheng Wang, et al. 2018.Marrying up regular expressions with 

neural networks:A case study for spoken language understanding. arXiv preprint 

arXiv:1805.05588. 

[6] Yanling Li, Yonghong Yan. Weakly-supervised training method about Chinese spoken 

language understanging[J]. Application of Computers, 2015, 35(7):1965-1968. 

[7] Zhiyuan Chen, Bing Liu, Hsu Meichun, et al. Identifying intent posts in discussion forums[C]// 

Proc. of Conference of the North American Chapter of the Association for 

ComputationalLinguistics-HumanLanguageTechnologies.Atlanta,2013:1041–1050. 

[8] Yue Qian. Research on the identification method of users’ travel consumption intent in chat 

robot[D]. Harbin: Harbin Institute of Technology, 2017. 

[9] Dauphin Y N, Tur G, Hakkani-Tur D, et al. “Zero-shot learning for semantic utterance 

classification,” arXiv preprint arXiv:1401.0509, 2013. 

[10] Appelt D, Bear J, Cherny L, et al. GEMINI: A natural language system for spoken-language 

understanding[C]// Proc. Meeting of the Association for Computational Linguistics. 1993:54-61. 

[11] Yan Pengju. Research on natural language understanding in conversational systems[D]. Beijing: 

Tsinghua University, 2002. 

[12] Ahmad A S, Hassan M Y, Abdullah M P, et al. A review on applications of ANN and SVM for 

building electrical energy consumption forecasting[J]. Renewable & Sustainable Energy 

Reviews, 2014, 33(2):102 -109. 

[13] Andrew McCallum, Kamal Nigam, et al.A comparison of event models for naive bayes text 

classification[C]// In AAAI-98 workshop on learning for text categorization. 1998:41–48.  

[14] Schapire R E, Singer Y. BoosTexter: a boosting-based system for text categorization[J]. 

Machine Learning, 2000, 39(2-3):135-168. 

[15] Haffner P, Tur G, Wright J H. Optimizing SVMs for complex call classification[C]// IEEE 

International Conference on Acoustics. IEEE, 2003:632-635. 

[16] Genkin A, Lewis D D, Madigan D. Large-Scale Bayesian Logistic Regression for Text 

Categorization[J]. Technometrics, 2007, 49(3):291-304. 

[17] Bengio Y, Ducharme R, Vincent P, et al. A neural probabilistic language model[J].Journal of 

Machine Learning Research, 2003, (3): 1137-1155. 

[18] KimD, LeeY, ZhangJ, et al. Lexical feature embedding for classifying dialogue acts on Korean 

conversations[C]//Proc. of 42th Winter Conference on Korean Institute of Information Scientists 

and Engineers, 2015: 575–577. 

[19] Kim JK, Tur G, Celikyilmaz A, et al. Intent detection using semantically enriched word 

embeddings[C]// Spoken Language Technology Workshop. IEEE, 2016:414-419. 



AIACT 2019

IOP Conf. Series: Journal of Physics: Conf. Series 1267 (2019) 012059

IOP Publishing

doi:10.1088/1742-6596/1267/1/012059

10

 

 

 

 

 

 

[20] Lecun Y L, Bottou L, Bengio Y, et al. Gradient-Based Learning Applied to Document 

Recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. 

[21] KimY.Convolutional Neural Networks for Sentence Classification[C]// Proc. of the 2014 

Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014:1746–1751.  

[22] HashemiHB., AsiaeeA, KraftR, Query intent detection using convolutional neural networks[C]// 

International Conference on Web Search and Data Mining, Workshop on Query Understanding , 

2016. 

[23] Bhargava A, Celikyilmaz A, Hakkanitur D, et al. Easy Contextual Intent Prediction and Slot 

Detection[C]// IEEE International Conference on Acoustics. IEEE, 2013: 8337-8341. 

[24] Hochreiter S, Schmidhuber J. Long Short-Term Memory[J]. Neural Computation, 1997, 

9(8):1735-1780. 

[25] Ravuri S V, Stolcke A. Recurrent neural network and LSTM models for lexical utterance 

classification[C]// 16th Annual Conference of the International Speech Communication 

Association. 2015:135-139. 

[26] Dey R, Salemt F M. Gate-Variants of Gated Recurrent Unit (GRU) Neural Networks[C]//IEEE 

60th International Midwest Symposium on Circuits and Systems.IEEE, 2017:1597-1600. 

[27] Ravuri S, Stolcke A. A comparative study of recurrent neural network models for lexical 

domain classification[C]// Proc. of the 41th IEEE International Conference on Acoustics, 

Speech, and Signal Processing. IEEE, 2016: 6075-6079.  

[28] Hui Yu, Xupeng Feng, Lijun Liu, et al. Identification method of user’s medical intent in 

chatting robot[J].Journal of Computer Applications, 2018, 38(8): 2170-2174. 

[29] Jiawei Huang. Research on the classification method of user intent in the human-machine 

dialogue system[D]. Wuhan: Central China Normal University, 2018. 

[30] Zhouhan Lin, Minwei Feng, Santos CN D, et al. A structured self-attentive sentence embedding. 

arXiv preprint arXiv:1703.03130, 2017. 

[31] Hinton G E, Krizhevsky A, Wang S D. Transforming Auto-Encoders[C]//In International 

Conference on Artificial Neural Networks, 2011:44–51.  

[32] Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules[J]. In Advances in Neural 

Information Processing Systems, 2017:3859–3869. 

[33] Wei Zhao, Jianbo Ye, Min Yang, et al. Investigating capsule networks with dynamic routing for 

text classification.Computing Research Repository, arXiv:1804.00857. Version 1, 2018. 

[34] Congying Xia, Chenwei Zhang, Chenwei Yan, et al. Zero-shot User Intent Detection via 

Capsule Neural Networks[C]//Proc. of the 2018 Conference on Empirical Methods in Natural 

Language Processing. 2018:3090-3099. 

[35] Yanling Li, Yonghong Yan. Research on execution strategy about statistical spoken language 

understanding[J]. Computer Science and Technology, 2017, 11(6):980-987. 

[36] Liu B, Lane I. Attention-Based Recurrent Neural Network Models for Joint Intent Detection and 

Slot Filling[C]//17th Annual Conference of the International Speech Communication 

Association. 2016:685-689. 

[37] Chunni Yang, Chaosheng Feng. Multi-intent recognition model with combination of syntactic 

feature and convolution neural network[J]. Journal of Computer Applications, 2018, 38(7): 

1839-1845. 


