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Abstract. Industrial process anomaly detection mechanisms have been proposed to protect 

industrial control system to minimize the risk of damage or loss of resources. In this paper, an 

one-class Support Vector Machine based extended boundary (EB-OSCVM) is used to detect 

anomalies in industrial multivariate time series data from a simulated Tennessee Eastman 

Process (TEP) with many cyber attacks. In detail, determine the change points of each process 

variable and capture the causality relationship between the variables based on the location and 

time delay of the change points. Then, by monitoring the leaf nodes in the causality graph, we 

can know whether the system is abnormal, it can effectively reduce the dimension of process 

data. The EB-OSCVM extend classification boundary of OCSVM in order to reduce the error 

of noise, if data is outside the boundary of EB-OCSVM, there is an anomaly. Finally, tracing 

the anomaly source according to causal direction. An experiment is used to verify the 

effectiveness of the proposed approach, the results demonstrate that the approach presents a 

high-accuracy solution and traces the source of anomaly correctly.  

1 Introduction 

The rapid growth of information and communication technologies has motivated the traditional 

industrial control system (ICS) to seek tighter integration between physical process and cyberspace. 

However, integrating the cyber and physical domain significantly reduces isolation of the physical 

system from the outside world, which increases their vulnerabilities and triggers a number of security 

problem [1,2]. 

Unlike information technology (IT) system, the main target of cyber-attacks on industrial control 

system is to cause a catastrophe by disrupting the physical process. An arbitrarily attack on the 

physical process would potentially cause the whole system to shut down. If only consider cyber 

information, the attack might be neglected when the activities are hidden or the evidence of the attack 

is insufficient to be identified as an anomaly in the cyber domain. Therefore, the information of 

relevant physical process for anomaly detection must be taken into consideration.  

Different approaches have been proposed to detect anomalies in industrial physical process data, 

the goal of anomaly detection is find the unusual behaviors, i.e. behaviors that are not exhibited under 

normal operation. 

Constructing a mathematical model of ICS for both physics and control dynamics can detect 

anomaly [3-7]. Literature [3] describes a process-oriented technology for detecting network attacks 

against programmable logic controllers (PLCs), using autoregressive methods to model specific 

process variables. Based on process attribute invariants, Urbina et al. [4-7] used Linear Dynamical 

State Space (LDS) to model physical processes and detect anomalies caused by network attacks. 

Unfortunately, creating a precise model of complex physical processes is a very challenging task, 

arising from the tight integration of algorithmic control and complex physical processes. It requires an 
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in depth understanding of the system and its implementation, which is a time consuming and cannot 

scale up to large and complex systems. 

Most existing machine learning approaches focus on detecting anomalies in feature space, i.e., 

looking at data points with large deviation from normal space. These require little system knowledge 

and can detect a large range of attacks.  

The RNN is one of the machine learning approaches used for anomaly detection in the SWaT 

system. However, due to the expensive training time, they only consider the first out of the six stages 

of the system [8]. As a follow-up work, the Deep Neural Network (DNN) and the one-class Support 

Vector Machine (SVM) models have been applied for anomaly detection in physical process data. All 

stages and attack scenarios are considered in this work. But, the DNN and one-class SVM can only 

detect fewer attacks [9]. Kravchik et al.[10] used a variety of deep neural networks architectures 

including different variants of convolutional networks to detect anomaly. The method can effectively 

detect the physical process anomalies of ICS and significantly superior to method in [9]. An 

RNN-based forecasting approach detected early anomalies in industrial multivariate time series data 

from a simulated Tennessee Eastman Process (TEP) with many cyber-attacks [11].  

However, A significant shortcoming of the currently applied machine learning methods is that they 

provide little insight into the system and no explanation of detection results. All of the above articles 

can only detect anomalies and cannot Trace the cause of the anomaly. 

In [12], a novel graphical model-based approach is proposed to learn the local behavior of a 

complex water treatment plant, which is used for anomaly detection. Timed automa are learned as a 

model of regular behaviors in sensors signal and Bayesian networks are learned to discover 

dependencies between sensors and actuators. It can detect cyber-attacks with high precision, and trace 

the cause of anomaly according to correlation between sensors and actuators. However, the method 

depends on the periodicity and linearity of industrial process data, and the practical industrial data 

usually do not satisfy. 

In this work, we present a machine learning method of one-class SVM [13] based on extend 

boundary (EB-OCSVM) to detect attacks of Tennessee Eastman Process [14] (TEP), and trace the 

anomaly source. First, we use change points (CPs) to analysis causality between TEP variables and 

construct graph of causality. This method is suitable for both linear and non-linear system, and does 

not need to construct an accurate mathematical model to describe the correlation between variables. 

Then, obtaining normal classification boundary by training OCSVM, the boundary can be extended as 

anomaly detection control limit in order to reduce the error caused by noise. If process data exceeds 

control limit, anomaly is detected. Finally, if we capture anomaly in process data, trace the root cause 

of anomaly according to graph of causality. 

2 Methodology 

2.1 A Causal Discovery based Change Points 

With the increase in scale and complexity of process operations in large industrial plants, anomaly 

may occur on any of the thousands of components, easily propagate along information and material 

flow pathways and affect other parts of the system. To determine the root cause of certain abnormality, 

it is important to capture the process connectivity. 

In a complex industrial process, elements are not only connected to each other, they are also 

mutually dependent. The concept of causality has been introduced to describe the cause-effect 

relationships between variables or events. There are two characteristics of causality: (1) the cause 

occurs before the effect; (2) the cause contains information about the effect, we focus on the feature of 

causality that the cause occurs before the effect and the cause inevitably impel the effect to change. 

2.1.1 Determination of change points. In this section, we propose a change-point detect method, 

determining unknown number of change points. The goal of change-point detection is to detect abrupt 

changes in the distribution of samples. Industrial process variables have characteristics of high delay 
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and high noise, even the same variable have different level of noise, so it is difficult to capture 

causality.  

The most critical step of the proposed method is to determine change points of a given data 

sequence according to the change of tendency among process variables. It can be seen that a point in a 

data sequence with the maximum distance to a line connecting the starting and ending point of the 

sequence has the greatest impact on the tendency. Thus, we need to detect some special points, 

referred to as change points, representing the change of tendency among process variables. 

First, in order to prevent that some process variables with large amplitudes erroneously play 

dominate roles, the proposed method preprocesses the raw data by normalizing the observations of 

each process variable in order to make data between 0 and 1. Given the raw data of a multivariate time 

series )}n(
~

{
~

iXT  for i=1, ..., M and n=1, ..., N, the normalized time series T is obtained as 
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Where min and max denote the sample maximum and minimum value, respectively. The 

orthogonal distance from a point Xi to the line AB between the point XA and XB is defined by equation 

(2), namely, the distance between P and its projection on AB. 
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A potential change point P on a segment [s, e] is given by:  

i
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It can be shown that p is the maximum distance of the change-point location in interval [s, e]. The 

value Dp is tested against a threshold Wt in order to decide whether the null hypothesis of no 

change-point is rejected or not, recursively applying the above method on [s, p] and [p+1, e]. The 

algorithm stops in each current interval when no further change point are detected, that the obtained 

distance fall below threshold Wt. 

2.1.2 Determination of threshold Wt. The Wt is the threshold to terminate recursive process, if Wt is to 

small, there are many false positive, and if Wt is to high, we will miss many change points. That is to 

say, a rational threshold has great influence on the determination of change point. Meanwhile, process 

variables have different level of noise, a fixed threshold used in different process variables is 

unpractical, We propose a method that can adaptively determine the threshold Wt. 

Given a sequence T={X(i)} for s<=i<=e, s and e are start point and end point of sequence, 

respectively, two special indices s=1 and e=N. 

(1)we calculating orthogonal distance from a point to a line connecting the starting and ending 

points of the sequence, obtain a change point P that makes orthogonal distance maximum. Then 

calculating first-order differential cumulative sum, which can represent the change of trend and the 

direction of change, in two segments [s, p] and [p+1, e], respectively, denoted as sum_l and sum_r. 

Last, we calculate the absolute value of the difference between sum_l and sum_r, denoted as p_th. 

(2) calculating the maximum orthogonal distance of subsequence [s, p] , the process is as step (1), 

we can get the absolute value of the difference as pl_th; 

(3)calculating the maximum orthogonal distance of subsequence [p+1, e], the process is as step (1), 

we can get the absolute value of the difference as pr_th; 

(4) If p_th > pl_th and p_th > pr_th, then stop, otherwise, recursively applying the above method 

on [s, p] and [p+1, e]. 

Thresholds vary in the iteration process, and suitable for different levels of noise, so we can get 

change points without fixed threshold. 
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2.1.3 Causal analysis based change points. To describe the causal relationships between all the 

variables, a graph can be constructed with nodes denoting variables and arcs denoting their causal 

direction. Causality analysis provides an effective way to localize root cause of plant-wide 

abnormalities since a causal graph can represent the direction of anomaly propagation. 

We construct a causal graph based on the number and location of change points, which can be used 

to reflect the causal relationship between process variables, even be used for anomaly traceability. 

Given variable X and Y, if X is the cause of Y, then Y must change when X changes. Since the 

industrial process variable has time delay and noise, the change points of Y will occur after X. If each 

change point of X can cause Y changes, and in the each change interval of X, the number of change 

points of Y remains constant, we can accept the hypothesis that X cause Y. Moreover, if Y change after 

X change, and X change after Y change, we can get the direction of correlation: X cause Y and Y 

cause X, that is to say, X and Y are mutually causal. 

The change points method, a bivariate analysis, can capture a significant causality or an indirect 

causality. In order to distinguish direct or indirect causality between two variables, we use time delay 

as a rule. Given an underlying model is X->Y->Z, if the delay of X cause Z is less than the delay of Y 

cause Z, then we can say there is a direct causality between X and Z, otherwise, X indirectly caused Z 

conditioned on Y. 

2.2 Anomaly Detection Based on EB-OCSVM 

Recently, unsupervised machine learning was shown to be effective for detecting ICS attacks. In this 

paper, we apply EB-OCSVM algorithm to detect anomaly in industrial control system. The 

EB-OCSVM builds a model from training on normal data and then classifies test data as either normal 

or attack based on its classification boundary.  

Physical process data of ICS has high noise, we used OCSVM to learn classification boundary and 

obtain label after training, then stripped noise data where label is -1 as normal data, we can get upper 

control limit (UCL) and lower control limit (LCL), where UCL, LCL is maximum and minimum value 

of normal data, respectively. Lastly, we extended control limit as the abnormal boundary of 

EB-OCSVM in order to reduce false positive because of strong noise, denoted by 

)(xUCLUCL            (4) 

)(xLCLLCL             (5) 

Where x is normal data after noise elimination,δ is standard deviation of x, α is parameter that 

determine the allowable error range. So, we obtain boundary control to determine that an anomaly has 

occurred, i.e. if data is greater than UCL or lower than LCL, we determine that an anomaly is detected. 

In this work, we define α as 3. 

By monitoring the leaf nodes, we can monitor the whole variables of causality graph whether is 

abnormal. It is reduce dimension of process data. If a leaf node is abnormal, the parent node of the leaf 

node should be analyzed, until the parent node of the current node is normal, so, the current node is the 

source of the anomaly. 

3 Experiments 

3.1 TEP Description 

In this experiment, we used the TEP dataset [15]. TEP is a benchmark simulation model to test process 

control and monitoring approaches, represented in Figure 1. It was simulated at different normal 

modes and under cyber-attacks. The TEP has five major units: a reactor, a compressor, a separator and 

a stripper, the dataset contains 11 manipulated variables, 22 process measurements and 19 analyzer 

measurements. Our experiment focuses on reactor unit, including 4 measurements: reactor level, 

reactor pressure, reactor temperature, reactor cooling water temperature and 1 manipulated variable: 

reactor cooling water flow.  
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Figure 1. Tennessee Eastman Process 

3.2 Causality graph based on change-points 

We use change points to capture causality between reactor variables. According to experiment, we can 

get change points as circle points in Figure 2, as can be seen from the figure, the location of the change 

points are accurate.  

 

(a) reactor pressure 

 

(b) reactor level 
 

(c) reactor temperature 

 

(d) reactor cooling temperature 

 

(e) reactor cooling water flow 

Figure 2. Change points of 

reactor variables 

Then, analyse causality according to the number and occurrence time of change points. The 

occurrence time and number of change points shown in Table 1. 
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Table 1. Information of change points 

NO 
Reactor 

pressure 

Reactor 

level 

Reactor 

temperature 

React cooling 

temperature 

Reactor cooling 

water flow 

1 292 1146 58 23 4 

2 1728 5752 867 345 248 

3 5548 12283 2002 1394 1348 

4 9859  4245 3828 3812 

5    8483 7528 

6    15755 15739 

First, we get a pair of variables with same number of change point: react pressure and reactor 

temperature, represent as A and B respectively. The change points occurs time of A takes precedence 

of B according chronological order, We can conclude that the change in A affects B, that is, A is cause 

of B denoted A->B. Similarly, the cause of reactor cooling water flow is react cooling temperature. 

Next, we compare variables with different number of change points, like reactor level and react 

cooling temperature. The first change point of reactor level occurs at 1146, we search for the change 

point of react cooling temperature that is closest and greater than 1146 at 1394. By same ways, we 

show the results in Table 2. Calculating the number of change points of reactor cooling temperature 

between the previous change point and the current change point of reactor level, because of different 

numbers of change point, reactor level is not affect react cooling temperature and react cooling water 

flow. The causal relationship analysis process between other variables is as described above. 

Table 2. Analyze change points of reactor level 

CP of Reactor level 1146 5752 12283 

CP of React cooling temperature 1394 8483 15755 

Number of CP of React cooling 

temperature 
 2 1 

CP of React cooling water flow 1348 7528 15739 

Number of CP of React cooling 

water flow 
 2 1 

Finally, for direct causality and indirect causality, we consider that the smaller the time delay is, 

the more direct causation is. As mentioned above, the causal graph is shown in Figure 3. 

temperature pressure

Cooling 

water flow

Cooling 

temperature

level

 

Figure 3. Causality graph of TEP reactor 
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3.3 Anomaly detection based on EB-OCSVM 

In this paper, we use EB-OCSVM algorithm to detect anomaly, seek boundary of normal data. In order 

to thoroughly evaluate anomaly detection techniques, four evaluation indexes are adopt: accuracy (A), 

false positive rate (FPR) , false negative rate (FNR) and recall rate (R), where T represents a normal 

state and F represents a abnormal state. Their definitions are described as follows: 

A=(TP+TN)/(TP+TN+FP+FN)       (6) 

FPR=FP/(FP+TN)         (7) 

FNR=FN/(FN+TP)        (8) 

R=TP/(TP+FN)         (9) 

There is no anomaly of reactor level, Table 3 shows the experimental results of TEP variable except 

reactor level. 

Table 3. Effect of anomaly detection 

 
Reactor 

pressure 

Reactor 

Temperature 

React cooling 

Temperature 

Reactor cooling 

water flow 

A 99.93% 99.87% 98.59% 99.72% 

FPR 0.06% 0.13% 1.38% 0.16% 

FNR 1.7% 0% 4.77% 12% 

R 98.3% 100% 95.23% 88% 

It can be seen from Table 3 that EB-OCSVM-based anomaly detection method has higher accuracy 

and recall rate. Although the partial variable has a high false negative rate, EB-OCSVM can 

effectively detect process data anomalies. 

3.4 Analyze the source of anomaly 

In section, we obtained causality graph of reactor unit, combining with anomaly detection results, we 

can capture the source of the anomaly. If EB-OCSVM detect an abnormality in the reactor pressure, it 

needs to analyze the cause of the reactor pressure in the causality graph. If the node has an abnormality, 

continue to analyze the parent node of the cause node until the parent of the current variable is normal. 

So anomaly is generated by the current variable. Because of the cause of reactor pressure is abnormal 

and the cause variable does not have a parent node, the anomaly is caused by the reactor temperature. 

4 Conclusion 

In this paper, EB-OCSVM was proposed to detect anomaly of industrial control system process. We 

used change points capture causality between process variables, which change points were determined 

by maximum distance to a line connecting the starting and ending point of the sequence. It can obtain 

an unknown number of change points and be used for periodic and non-periodic systems. By 

analyzing the number and time delay of change points, the correlation between the variables and the 

causal direction are obtained. The process variable , which is the leaf node in the causal graph, were 

classified into normal or abnormal ones by EB-OCSVM, if there is an anomaly detected, trace the 

causality graph to determine the source of anomaly. The results illustrated the effectiveness of the 

proposed method. 
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