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Abstract. An approach that employs deep learning technology is presented to recognize 

satellites based on radar high-resolution range profile (HRRP) data. We focus on extracting 

effective satellite recognition features in this paper. Thus, a deep learning model is constructed 

by gated recurrent unit (GRU) neural network and support vector machine (SVM) to extract 

more abstract and accurate features. Firstly, the radar HRRP data of four satellites is obtained by 

simulation. And data preprocessing has been done according to HRRP characteristic. Next, a 

GRU-SVM model is set up and some deep learning skills, such as dropout and cross validation, 

have been applied to improve recognition accuracy.  The training results of GRU neural network 

show their effectiveness. In order to demonstrate the superiority of this approach, five other 

feature extraction methods have been used as a comparison based on clean satellite HRRP data 

and noisy data. The experiment results show that the presented GRU-SVM model could 

recognize satellites effectively and accurately, and has better recognition performance and noise 

robustness compared with five other methods. 

1. Introduction 

Space targets recognition is a primary function of space surveillance information system, and satellites 

recognition is of critical importance on this issue. However, few open research achievements have been 

reported. The difficulty of this problem is that satellites are simply too small or too far away for detailed 

information to be recognized, and few effective identification data can be obtained. With the 

development of wideband radar [1], wu could obtain lots of useful radar data, such as high-resolution 

range profile (HRRP), synthetic aperture radar (SAR) image, inverse synthetic aperture radar (ISAR) 

image, etc. HRRP is the amplitude of coherent summations of the complex time returns from target 

scatterers in each range cell [2], which represents the projection of the complex returned echoes from 

the target scattering centers onto the radar line-of-sight (LOS) [3]. It contains abundant target structure 

signatures, such as target size, scatterer distribution, etc. In addition, compared with SAR/ISAR image, 

HRRP has the advantages of easy acquisition and processing. That’s why radar HRRP target recognition 

has received intensive attention from radar automatic target recognition (RATR) community [4-11]. So 

the work in this paper focuses on the satellites recognition based on the HRRP data. 

Feature extraction and selection is a basic and crucial technology for radar HRRP target recognition 

research. It is important to adopt reasonable and effective features to improve recognition performance. 

For that reason, many researches have been done on feature extraction and selection methods by related 
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scholars. In the early days, researchers often calculated the power spectrum, FFT-magnitude and various 

high-order spectrum of HRRP data, and used them as the features of classifier for target recognition [4-

6]. Such engineered features are useful but rely on researchers’ experience and skill. If we do not have 

sufficient prior knowledge for the applications, those features would be brittle and incomplete. In 

addition to features of artificial selection, machine learning algorithms have been widely utilized to 

represent features based on high-dimensional HRRP data by many researchers [7-11]: the principal 

component analysis (PCA) feature subspace is constructed to minimize reconstruction error for RATR 

[7]. Dictionary learning is adapted to extract the noise-robust and highly discriminative features of the 

HRRP [8-9]. Manifold learning is employed in target recognition of radar HRRP to reduce the feature 

dimensions [10-11]. These methods can work well on some occasions, but all of them are shallow 

architectures that cannot effectively characterize the radar HRRP. Therefore, how to automatically 

extract the deep abstract features, which are beneficial for target recognition, has become an important 

issue. 

The deep learning theory [12] put forward by Hinton can effectively solve the above problem. The 

essence of deep learning is to construct a neural network containing multiple hidden layers to map the 

data in order to obtain the deep essential characteristics [13]. Some deep learning structures applied in 

several recent papers have been demonstrated to be useful for radar HRRP target recognition, such as 

autoencoder and its varieties [14-15], convolutional neural network (CNN) [16], recurrent neural 

network (RNN) [17-18]. Because of the unique structure of RNN, it has been widely applied to process 

sequential data such as action recognition [19], scene labelling [20], and language processing [21], and 

has achieved impressive results [22]. GRU neural network is a kind of RNNs and can learn long term 

reliance on information [23]. In this paper, the HRRP data of four satellites are obtained by simulation. 

For satellites recognition based on this sequential data, a recognition model has been designed in this 

paper, which contains GRU neural network as a deep features extractor and SVM as a classifier. 

Experiments have demonstrated that this GRU-SVM model performs well on the task of satellite 

recognition based on radar HRRP data and has relatively strong noise robustness. 

2. Description and Preprocessing of HRRP 

HRRP is the amplitude of the echo summation for target scattering centers in each range cell of wideband 

radar. Figure 1 shows the illustration of an HRRP sample from a satellite target. High resolution radar 

operates in microwave frequency band. Generally, the size of targets or their components is much larger 

than the wavelength of radar. For complex targets such as a satellite, the projection of an object on radar 

line of sight can be divided into many range cells by high resolution radar. 

The radar signatures from scattering centers within the same range cell will be coherently summed 

into a single signature for that range cell. According to the literatures [2, 5], if the radar transmitted signal 

is   2 cj f t
s t e


, the nth  complex echo in the dth  range cell ( 1,2,d D ) in the baseband can be 

approximated as 

           4
1, d di

L j R n r n
id dix t n s t e

     
   (1) 

where  s t  is the complex envelop which approximates to be unvaried with the radial displacements 

for all scatterers in one range cell. cf  is the radar signal carrier frequency and   denotes the wavelength 

of high resolution radar. dL  represents the number of target scatterers in the dth  range cell. di  is the 

intensity of the ith  scatterer in the dth  range cell.  R n  is the radial distance between target reference 

center in the nth  echo and the radar.  dir n  is the radial displacement of the ith  scatterer of the dth  

range cell in the nth  echo. Usually,  s t  is a rectangular pulse signal with unit intensity and  could be 

omitted. After eliminating the initial phase of the nth  echo 
   4j R n

e
 

, the nth  HRRP can be defined 

as 
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Figure 1. An HRRP sample from a satellite target.  

Several issues should be considered when HRRP is applied to radar target recognition task. 1) The 

first one is time-shift sensitivity of HRRP. HRRP is only a part of received radar echo extracted by a 

range window, in which a target signal is included. So the position of target signal in HRRP may vary 

with the measurement. However, feature learning needs all the training samples to learn a uniform 

parameter model. So we adopt envelope alignment method [24] as time-shift compensation technique 

in this paper. 2) The second one is amplitude-scale sensitivity. It comes from the fact that the intensity 

of an HRRP is a function of radar transmitting power, target distance, radar antenna gain, radar receiver 

gain, radar system losses and so on. HRRPs measured by different radars or under different conditions 

will have different amplitude-scales. To deal with amplitude scale sensitivity, each HRRP is normalized 

by dividing maximum amplitude per frame. After the above preprocessing, the HRRP sample examples 

of four satellites are shown in Figure 2. 

The last one is called target-attitude sensitivity. It means that the variation of target attitude will lead 

to different range shifts for different scattering centers on the target, even within the attitude region 

where the scattering center structure remains unchanged. Considering that the attitude of normal satellite 

is relative stable, it is expected to be solved by recognition methods.  
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(c) Sat3                                                    (d) Sat4 

Figure 2. HRRP sample examples of four satellites. 

3. GRU-SVM model 

3.1.  GRU 

Compared with the feed-forward networks such as CNN, RNN has a recurrent connection where the last 

hidden state is an input to the next state [25-26]. RNN will remember the previous information and use 

the previous information to influence the output of following nodes, so it is better to solve problems 

related to time series data [27]. That is, RNN can obtain the output sequence from the input sequence at 

the current time step, and can also predict sequence in the next time step. However, RNN suffers from 

long-term dependencies problem, and gradient vanishing or exploding may occur during the training 

process, making it impossible to process long-term sequence data. In response to this problem, variants 

of RNNs such as long-short term memory (LSTM) [28-29] and GRU [30] have been proposed. 

The GRU neural network is a variant of the LSTM network. There are only two gates in the GRU 

network unit, namely the update gate z and the reset gate r . The update gate is utilized to modulate the 

previous information inside the unit. The larger the value of the update gate, the more the status 

information of the previous moment insides. The reset door is used to control the previous state 

information which will be forgotten, the smaller the value of the reset gate, the more the previous state 

information is forgotten. Figure 3 shows a GRU model, where h  denotes candidate activation. GRU 

model has been proved performing better than simple RNNs in the task of processing sequential data 

[31]. 

 

Figure 3. A Gated Recurrent Unit. 

The update gate tz is defined as 

  1t z t z tz = W x U h  (3) 

where W  and U are weight matrix respectively. x  denotes input data and h is known as hidden state. 

The reset gate tr is defined as 

  1t r t r tr = W x U h  (4) 
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The hidden state in a GRU is linearly modelled as 

   11t t t tz z  h h h  (5) 

The candidate hidden state is 

   1tanht h t h t tr   h W x U h  (6) 

where   is element-wise product. The     and  tanh   are two different activation functions which 

can be defined as 

 

 

 
2

2

1

1

1
tanh

1

x

x

x

x
e

e
x

e












 (7) 

In this paper, GRU is employed in the GRU-SVM model to extract effective features based on HRRP 

sequential data. 

3.2.  GRU-SVM model construction 

In this paper, we build a GRU-SVM model. It consists of two parts：an encoder and a classifier. The 

encoder takes HRRP data of different satellites as input. Length-fixed feature vectors produced by the 

encoder contain sufficient information for target recognition. The classifier takes feature vectors as input 

for classifier and the corresponding satellites classes will be identified. 

The encoder consists of an input layer, two GRU hidden layers of size 96 and a fully connected layer 

(activation function is linear and the number of units is 64). The output of this fully connected layer is 

feature vector. The classifier used here is SVM and takes feature vector as its input. The structure of 

GRU-SVM model is shown in Figure 4. In order to extract good features, the encoder is followed by 

two fully connected layers, whose activation function are relu and softmax respectively. This GRU 

neural network utilizes the Adam optimizer for optimization and use categorical crossentropy as a loss 

function to reduce the difference between the model classification value and the real value. At the same 

time, in order to make the training model more accurate, the bidirectional scheme as demonstrated in 

reference [32] is applied in GRU hidden layers. 

 

Figure 4. The structure of GRU-SVM model. 
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4. Experiments 
In this section, testing experiments of GRU-SVM model have been carried out to obtain its recognition 

performance based on the HRRP data of four satellites, which all have 35000 HRRP of 300 dimensions. 

To better illustrate the advantages of this model, some frequently used feature extraction methods are 

utilized for comparison, including PCA, linear discriminant analysis (LDA), dictionary learning, 

autoencoder and simple RNN. In addition, noise is usually inevitable, which has great influence on the 

performance of radar target HRRP recognition. So recognition capability of these methods has also been 

tested when HRRP data with the noise of different signal-to-noise ratio (SNR) is utilized as input. 

4.1. Training assessment 

Most HRRP data of four satellites (about 70%~80%) will be applied as input to train the GRU neural 

networks and others are utilized as testing set. Meanwhile, 20% of training data is used as validation set 

to adjust the hyper-parameters. To avoid the problem of overfitting, Drop-out has been employed for 

the two GRU layers. In this paper, drop rate is set to 0.25. Activation function and loss function described 

in the section 3.2 are applied for GRU neural network. When the evaluation indicator is not improving, 

the learning rate will decrease in multiple. To accelerate the training, batch normalization inserted after 

each layer. 

Recognition accuracy, loss and mean absolute error (MAE) are often applied to assess the training 

result. Recognition accuracy is the ratio of the number predicted correctly to the total testing number, 

and loss is defined the difference of prediction value and true value. Assuming ˆ
iy  is the prediction value 

of ith  sample, 
iy  is expected value, the MAE is defined as 

  
1

1
ˆ ˆ,

M

i i
i

M

MAE y y y y
n 

   (8) 

where M is the total number of samples. The training results of 80 times are shown in Figure 5. The 

recognition accuracy, loss and MAE all change as expected. The accuracy of training and validation 

set in the process of extracting feature reaches 99.1% and 99.3% and the loss and MAE continue to 

decline.  

       
(a) Accuracy                                    (b) Loss                                      (c) MAE 

Figure 5. Training records for 80 times. 

4.2.  Recognition preformation comparison 

After training GRU neural networks, it is important to get the recognition results of GRU-SVM model. 

In order to demonstrate its effect and advantages, the recognition performance for testing data has been 

compared when different methods are applied to identify satellites. Two deep networks (GRU and 

simple RNN) and four shallow models (PCA, LDA, dictionary learning and autoencoder) serve as 

feature vector extractor, and linear SVM is used to classify the satellites (here linear SVM only serves 

as a simple baseline, thus it does not employ any feature extraction). The recognition accuracy of these 

six methods is shown in table 1 and their confusion matrices are shown in Figure 6. Compared with the 

latter five methods, GRU-SVM model has good recognition performance for the four satellites. 

Therefore, its total recognition accuracy rate is highest among this six methods. 
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Table 1.  Accuracy of six recognition methods. 
  

recognition methods accuracy rate (%) 

GRU-SVM 99.4 

simple RNN-SVM 93.4 

PCA-SVM 91.9 

LDA-SVM 80.6 

dictionary learning-SVM 86.4 

autoencoder-SVM 91.5 

 

         

         (a) GRU-SVM                         (b) simple RNN-SVM                      (c) PCA-SVM 

         
                 (d) LDA-SVM                  (e) dictionary learning-SVM            (f) autoencoder-SVM 

Figure 6. Confusion matrix of six recognition methods. 

To further study the noise robustness of these six recognition methods, gaussian noise with different 

SNR (1dB, 10dB, 20dB and 30dB) is added to clean HRRP data. The recognition accuracy rate varies 

with SNR and the corresponding results are illustrated in the Figure 7. It shows that the GRU-SVM 

model has the greater capacity of robustness than five other methods. With the increase of HRRP data 

SNR, its recognition accuracy gets improved. It can be seen from this figure that when the SNR of 

satellites HRRP data is low, for example SNR=1dB, the recognition rate of these six methods is all less 

than 90%. However, the recognition accuracy of GRU-SVM model is still much higher than other 

methods. This demonstrates that the GRU-SVM model has greater noise robustness than other methods. 
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Figure 7. Recognition rate under different SNR noise. 

5. Conclusion 

In this paper, a GRU-SVM model has been designed for radar HRRP satellite recognition, and achieves 

better recognition performance than several traditional feature extraction methods in the experiments. 

According to the characteristic of HRRP data, we preprocess these data and establish the structure of 

GRU-SVM model. This model consists of two parts: GRU neural network as an encoder and SVM as a 

classifier. The effectiveness of GRU neural network has been validated in model training process. 

Performance comparison experiments are carried out to testing recognition accuracy of several shallow 

or deep models. The results demonstrate that the model presented in this paper achieves superior 

recognition performance than other models based on feature extraction, even for HRRP data with low 

SNR. 
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