This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

The Effects of Posture on Suspension Seat Transmissibility during Exposure to Vertical Whole-Body Vibration

, , and

Published under licence by IOP Publishing Ltd
, , Citation S. Aisyah Adam et al 2019 J. Phys.: Conf. Ser. 1262 012026 DOI 10.1088/1742-6596/1262/1/012026

1742-6596/1262/1/012026

Abstract

Suspension seat is used in the off-road condition to attenuate excessive vibration exposed to the human body. The efficiency of a seat reducing vibration not only depends on the dynamic characteristics of the seat, but the dynamic characteristics of human body and the characteristics of the input vibration as well. Tractor drivers adopted different postures during their farm work activities, which may influence the dynamic characteristics of the human body. However, the influenced of the driver's posture on suspension seat transmissibility has received less systematic attention. Thus, this study is carried out with the objective to investigate the effect of different postures on seat transmissibility when seated on a suspension seat. Three male subjects were exposed to random vibration at 2.0 m/s2 r.m.s with frequency ranging from 1-20 Hz, while seated on a vibration simulator for 60 seconds. The subjects adopted four seating postures: (i) relaxed, (ii) slouched, (iii) tensed and (iv) with backrest support. The study found that relaxed and slouched postures have a resonance frequency at 2.0 Hz. However, as the posture changed to backrest support, the resonance frequency of the seat transmissibility slightly increased by 0.25 Hz. This study suggested that changing the postures caused changes in the dynamics of human body, and thus affected the suspension seat transmissibility. It is concluded that, non-linearity in suspension seat transmissibility is influenced by the changes of body postures.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/1262/1/012026