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Abstract. Numerical analysis of the hydrostatic equilibrium of a compressed gas bubble
was carried out by the DFT method. Based on this analysis, we modified the hydrodynamic
equations of a quantum fluid taking into account quantum shell effects. An external force acting
on the electronic subsystem is added to the modified hydrodynamic equations. A numerical
algorithm for solving of the system of modified hydrodynamic equations is discussed.

Keywords: hydrodynamic equations, spatial distribution, hydrogen gas bubble, DFT
method.

1. Introduction
The effect of the spatial heterogeneity of degenerate electron distribution in a spherical well
was analyzed in [1]. The consequence of the effect is the appearance of an electric field acting
on the ion system and causing its movement. The characteristic size of the inhomogeneity is
of the order of the system size and, accordingly, by several orders of magnitude greater than
the distance between the particles. So the relaxation of the ions can be described using the
hydrodynamic approximation.

We analyze a spherical mesoscopic system – a compressed gas bubble of submicron size. The
characteristic values of the thermodynamic quantities of the compressed gas are the following:
ρgas ∼ (10-30) g/cm3, Ne ∼ 1030−31 m−3, EF ∼ (20-100) eV, Ti ∼ Te ∼ (0.1-1) eV. All electrons
are ionized and degenerated, and the ions are the classical gas.

The numerical analysis of the hydrostatic equilibrium of a gas bubble is presented in Section 2.
Numerical simulation of the electron distribution was carried out by the DFT method. The
analysis allowed us to formulate the simplest version of the hydrodynamic equations of a quantum
liquid. The quantum shell effects are taken into account by introducing an external force (the
oscillation potential) into the equation of motion of the degenerate electrons. Section 3 presents
a numerical algorithm for solving the system of modified hydrodynamic equations. We applied
this algorithm for the numerical analysis of ion relaxation in a compressed gas bubble.

2. Hydrostatic equilibrium of compressed gas bubble. DFT calculations.
To calculate distributions of electrons and ions in a spherically symmetrical bubble, we use DFT
with spherical jellium background model and hydrostatic equation for ions [1, 2]. In the case
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of a spherical symmetry the electron density and the density of ion liquid satisfy the system of
equations (there we use atomic units, where ~ = c = e = 1):(

−1

2

d2

dr2
+ VKS(r) +

l(l + 1)

2r2

)
Pnl(r) = εnlPnl(r), VKS = ϕ+ Vxc, (1)

ne(r) = 2
∑
n,l

(2l + 1)Θnl
P 2
nl(r)

4πr2
, (2)

− 1

nion
∇P − Zion∇ϕ = 0, with condition

∫ ∞
0

4πr2niondr = N (3)

ϕ(r) =
1

r

∫ r

0
4πs2(nion(s)− ne(s))ds+

∫ +∞

r
4πs(nion(s)− ne(s))ds. (4)

The first equation is the one-dimensional Kohn-Sham equation for radial wavefunctions Pnl,
where Vxc is the exchange-correlation potential in a local density approximation. Equation (3)
is the hydrostatic equation for ion density nion, where P = nionkT . The last is the expression
for the electric potential ϕ, which can be obtained from the Poisson equation. This system is
solved self-consistently using simple iteration method. Equation (3) can be simply integrated

ln(nion) = −Zion

kT
ϕ− lnT + C. (5)

(a) (b)

Figure 1. The density distributions of electrons (solid lines) and ions (dashed lines) for 10000
electrons at average density 1030m−3 (a) and 1031m−3 (b).

We have made several calculations for gas bubbles. Figure 1 shows the electron density
distribution and the ion density in equilibrium for 10000 electrons at average density 1030m−3

and 1031m−3 with infinite potential wall at the border, the temperature of ions is Ti = 10 eV.
There are also distributions of free electrons and electrons in the case of uniform ion jellium. It
can be clearly seen that the density of ions is adjusted to the electron and the difference between
density distributions is smaller for higher average density. At the same time the electron density
get very close to free electron density and for average density 1031m−3 they are almost coincide.

Quantum mechanical calculations can be applied for a relatively small number of particles
(N < 105), so we need to use simpler method such as quantum electron fluid model [3] for
larger number of particles. We will consider equation for quantum electron fluid without



LaPlas 2018

IOP Conf. Series: Journal of Physics: Conf. Series 1238 (2019) 012037

IOP Publishing

doi:10.1088/1742-6596/1238/1/012037

3

Bohm potential, but with osillation potential Uosc, which should reproduce density distribution
obtained in DFT calculations

− 1

ρe
∇pe +

e

me
∇ϕ+

e

me
∇Uosc = 0. (6)

As we have seen earlier, the electron density in DFT calculations with ions in equilibrium and
with an infinite potential border almost equal to the free electron density. Also ∇ϕ is rather
small, because both densities are very close to each other. So the oscillation potential

e∇Uosc ≈
1

nfreee

∇pe(nfreee ). (7)

3. Numerical algorithm of hydrodynamic equations
We consider the sphere of the initial radius R0 consisting of gas of degenerate electrons ne(r, t)
and classical ions ni(r, t). It is assumed that the electron density satisfies the equilibrium
condition at each time moment:

−e ∂
∂r

(ϕ+ Uosc − Ubar) +
1

ne

∂pe
∂r

= 0, (8)

where Uosc and Ubar is the oscillation and barrier potentials:

Ubar = − eV0
1 + exp[(R0 − r)/δ]

, Uosc = C

(
n̄

1030

1/3
)
R0(0)

R0(t)
f(r,R0(t)) (9)

where n̄ = ρ̄/mi is the average electron density, and V0 and C are the characteristic amplitudes
of the barrier and oscillation potentials, δ is the size of the barrier potential, and f(r,R0(t)) the
spatial profile of the oscillation potential.

The electron pressure depends on the local electron density and is determined by the following
expression:

pe =
(3π2)2/3

5

~2

me
n5/3e . (10)

The motion of the ion gas is a result of the action on the ions of the electrostatic field created
by the instantaneous distribution of ions and electrons. The ion gas is assumed to be ideal, i.e.,
the effects of viscosity and thermal conductivity are negligible, and is calorically perfect with
the equation of state p = (γ − 1)ρζ, where γ = 5/3 is the adiabatic exponent, p is the pressure,
ζ is the specific internal energy.

It can be shown that the influence of nonequilibrium between the distribution of ions and
electrons takes place in a very small neighborhood of the wall. Therefore, in the gas dynamics
calculations described below, it is assumed that there is a local equilibrium at all points inside
the sphere ni = ne. Then the electron pressure will determine the ion distribution.

The medium inside the sphere is assumed to be electro neutral, therefore at each time moment
the distributions of electrons and ions satisfy the condition of zero total charge:∫ R0(t)

0
ne(r, t)r

2dr =

∫ R0(t)

0
ni(r, t)r

2dr, ni = ρ/mi, (11)

where mi is the mass of ion.
The ion motion is described by the standard system of Euler equations for gas dynamics

under the assumption of spherical symmetry, which is supplemented by the right-hand side
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corresponding to the change in momentum and energy due to the electrostatic field produced
by charged particles-gas ions and free electrons:

∂ρ

∂t
+
∂ρU

∂r
=

2

r
ρU,

∂ρU

∂t
+
∂ρU2 + p

∂r
=

2

r
ρU2 − e

mi
ρ
∂ϕ

∂r
,

∂ρE

∂t
+
∂ρUH

∂r
=

2

r
ρUH − e

mi
ρU

∂ϕ

∂r
,

(12)

where e is the electron charge, E = U2/2 + ζ is the specific total ion energy, H = ζ + p/ρ is
the specific total enthalpy, ζ = p/ρ(γ − 1) is the specific internal energy of the ions, γ = 5/3,
0 ≤ r ≤ R0(t). The potential ϕ is determined by the equation (8), where we use ni instead of
ne.

We write the system of equations (8), (12) in dimensionless form. To do this, we choose the
scales of the characteristic physical quantities in the following form:

ρ∗ = 103kg/m3 – density,
L∗ = 10−6m – length,
U∗ = 103m/s,
t∗ = L∗/U∗ = 10−9s,
p∗ = ρ∗U

2
∗ = 109N/m2 – preasure,

Θ∗ =
miU∗
et∗

≈ 1.875 ∗ 104V/m – electric field strength,

ϕ∗ =
miU

2
∗

e
≈ 1.875 ∗ 10−2V – electric field potential.

The values of the physical parameters of the model:
e = 1.6 ∗ 10−19C – electron charge,
mi = 3 ∗ 10−27kg – ion mass,
ε0 = 8.85 ∗ 10−12C/(V ·m) – dielectric constant of vacuum,
ε = 104 – relative dielectric constant of ions.

The system of equations (12) can be written in a conservative form. In dimensionless
variables, it has the following form:

∂r2ρ

∂t
+
∂r2ρU

∂r
= 0,

∂r2ρU

∂t
+
∂r2(ρU2 + p)

∂r
= 2rp− ρr2∂ϕ

∂r
,

∂r2(ρE)

∂t
+
∂r2(ρUH)

∂r
= ρUr2

∂ϕ

∂r
,

(13)

where the gradient of the potential

∂ϕ

∂r
= K1ρ

−1/3∂ρ

∂r
+K3

[
R0(0)

R0(t)

]2 ∂Ubar

∂r
−K4

R0(0)

R0(t)

∂f(r,R0(t))

∂r
. (14)

Here K1, K3, K4 are dimensionless constants:

K1 =
(3π2)2/3

3

~2

emeϕ∗
n
2/3
∗ , n∗ = ρ∗/mi,

K3 =
~2

2emeϕ∗

(
3π2 ρ0mi

)2/3 [R0(0)

R0(t)

]2
,

K4 = C
10−10m

ϕ∗

(
ρ0
mi

)1/3
.



LaPlas 2018

IOP Conf. Series: Journal of Physics: Conf. Series 1238 (2019) 012037

IOP Publishing

doi:10.1088/1742-6596/1238/1/012037

5

If we introduce the total pressure π = p + 3
5K1ρ

5/3, the system of equations (13) can be
rewritten as follows:

∂r2ρ

∂t
+
∂r2ρU

∂r
= 0,

∂r2ρU

∂t
+
∂r2(ρU2 + π)

∂r
− 2rp = −ρr2

{
K3

[
R0(0)

R0(t)

]2 ∂Ubar

∂r
−K4

R0(0)

R0(t)

∂f(r,R0(t))

∂r

}
,

∂r2(ρE)

∂t
+
∂r2ρU(E + π/ρ)

∂r
=

3

5
K1ρ

5/3∂r
2u

∂r
−

−ρr2
{
K3

[
R0(0)

R0(t)

]2 ∂Ubar

∂r
−K4

R0(0)

R0(t)

∂f(r,R0(t))

∂r

}
,

(15)
Except for the right-hand side, the system of equations (15) coincides exactly with the classical

system of equations of gas dynamics. The EOS of the medium has the form

π = (γ − 1)ρe+
3

5
K1ρ

5/3 (16)

Therefore, the numerical integration (15) can be performed by the Godunov method [4]:

qn+1
i = qni −

3∆t

(rn+1
i+1/2)

3 − (rn+1
i−1/2)

3

[
(r
n+1/2
i+1/2 )2Fi+1/2 − (r

n+1/2
i−1/2 )2Fi−1/2 + Sπ,i + SU,i

]
, (17)

where

Sπ,i =

 0(
(rn+1
i+1/2)

2 − (rn+1
i−1/2)

2
)
πi

0

 , (18)

SU,i =


0(

(rn+1
i+1/2)

3 − (rn+1
i−1/2)

3
)
ρiS2,i(

(rn+1
i+1/2)

2Ui+1/2 − (rn+1
i−1/2)

2Ui−1/2

)
3K1ρ

5/3 +
(

(rn+1
i+1/2)

3 − (rn+1
i−1/2)

3
)
ρiUiS3,i

 ,
Here, S2,i and S3,i the right-hand sides of the equations connected with the barrier and oscillation
potential, and the values at the edges of the cells (half-integral indices) are determined from
the solution of the Riemann problem. To solve the Riemann problem on the edges of countable
cells, we use the local approximation of the EOS (16)

π = (γ − 1)ρe+ c20(ρ− ρ0) (19)

where the parameters of the EOS c0 and ρ0 are approximated from the value of the local density
by the following relations:

ρ0 =
2

5
ρ, c20 = K1ρ

2/3, (20)

on the basis of splitting equations. At each time step, a hyperbolic system with zero right-hand
side is first solved.

The Courant number is determined by the speed of sound of the system (13)

c2 =
γ(π + π0)ρe+ 3

5K1ρ
5/3

ρ
, π0 =

2

5γ
K1ρ

5/3. (21)
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Figure 2. Stationary distributions of hydrodynamic quantities for different values of the
oscillation potential amplitude.

The numerical scheme (17), (18) is used to solve the stationary problem of the distribution
of the ion-electron system in a spherical region of radius 1 µm. The calculated grid consists of
300 equidistant cells. The number of Courant in the calculations was 0.5. Initial distributions
in dimensionless quantities:

t = 0 : ρ = 5, U = 0, p = 21

Calculations were carried out with δ = 0.1R0 and three variants of the amplitude of the
oscillation potential C =10V, 1V, 0.1V. The results of the distributions of hydrodynamic
quantities after the system’s output to the stationary mode are shown in Fig. 2. Black color
shows the results for C = 10V, red – C = 1V and green – C = 0.1V. We can see that the
influence of the oscillation potential is significant for C = 10V and is insignificant for C = 1V
and C = 1V.

4. Conclusion
Based on the analysis of the hydrostatic equilibrium of a compressed gas bubble, we derived
modified hydrodynamic equations taking into account the quantum shell effects. The method
is based on the addition of an oscillation potential to the equation of motion of the electrons.
A numerical algorithm for solving a system of hydrodynamic equations based on the Godunov
method is developed.
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The results of numerical analysis of the relaxation of a compressed gas bubble are presented.
They demonstrate the significant influence of the oscillation potential at hydrodynamic
quantities of compressible gas bubble.
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