Paper The following article is Open access

Graphenic carbon as etching mask: patterning with laser lithography and KOH etching

, , , and

Published under licence by IOP Publishing Ltd
, , Citation A Furio et al 2019 J. Phys.: Conf. Ser. 1226 012011 DOI 10.1088/1742-6596/1226/1/012011

1742-6596/1226/1/012011

Abstract

The wet anisotropic etching process is generally used in the field of micromachining (MEMS), particularly for commercial products such as accelerometers. Hard masks like oxide or nitride play a key role in the transfer of patterns to the substrate during the lithography process. This work reports on the use of polycrystalline graphenic carbon as an etch mask for wet chemical processing and outlines a simple method to create patterned structures on (100) silicon wafers. Graphenic carbon (GC) was deposited on the silicon substrate by chemical vapor deposition (CVD) using C2H4 as precursor. The desired pattern was written in the spin-coated negative photoresist using UV laser lithography. Different geometrical shapes were printed on the substrate with dimensions ranging from 10 to 50 micrometers. In the next stage, the O2 plasma etched away the carbon from the area not covered by the photoresist, acting as an additional mask for this and the subsequent processing steps. Finally, the sample was immersed in the KOH bath saturated with isopropanol and the etching rate was evaluated for each crystal plane. Compared to the use of a sacrificial oxide mask, this technique is simpler and produces more reliable results.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/1226/1/012011