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Abstract. Using the strain space thermoplasticity theory, proposed by the first author, the 

coupled dynamic thermomechanical boundary value problems are formulated. The strain space 

thermoplasticity theory, in contrast to the existing one, allows to formulate the coupled 

thermoplastic boundary value problems for the displacement and temperature increments. The 

explicit and implicit finite difference equations for two dimensions case of the boundary value 

problems are constructed. The numerical solution of the explicit finite difference equations 

reduced to the application of the recurrent formulas, whereas the implicit scheme reduced to the 

application of the elimination method. Comparison shows that the numerical results obtained 

using the explicit and implicit schemes for aforementioned methods are coincides.   

1.  Introduction 

Thermo-mechanical coupling is the most common class of coupled problems, in which the mechanical 

response of the structure depends on its thermal behavior and vice versa. The investigation of the joint 

influence of the thermomechanical forces on the deformation process of materials is an actual problem 

of solid mechanics and is usually referred as the coupled problem of the thermoelasticity or 

thermoplasticity. Studies in the field of coupled thermoelasticity [1-4] and thermoplasticity [5-13] are 

widely developed due to their many applications in the advanced structural design problems. 

The coupled thermoelasticity problems investigated by Biot[1], Lord and Shulman[2], Youssef[3], 

introduced a generalized coupled theory with a wave-type heat equation. In [4] develops the theoretical 

framework appertaining to coupled thermomechanical deformations of solids, subject to large as well 

as inelastic deformations. The essential feature of the analysis is a consistent natural formulation which 

encompasses also all thermodynamic aspects. 

Simo and Miehe [5&29] present a complete formulation of a model of coupled associative 

thermoplasticity at finite strains, addresses in detail the numerical analysis aspects involved in its finite 

element implementation, and assesses the performance of the proposed mechanical and finite element 

models in a comprehensive set of numerical simulations. The coupled thermoplasticity problems are 

considered in [6-12]. The coupled visco-plasticity are considered by Stainier and Ortiz [8]. In [13], a 
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variational formulation of the coupled thermo-mechanical boundary-value problem for general 

dissipative solids is presented. 

It is known that depending on the loading surfaces considered in the stress and strain spaces may be 

formulated two types of constitutive relations of plasticity. The strain space formulation of plasticity 

theory was proposed by Naghdi and Trapp [14], Casey and Naghdi [15] and was showed that plastic 

strain rate is normal to the loading surface, whereas Yoder and Iwan [16] considered an alternative 

associated flow law using so called a stress relaxation tensor normal to the loading surface in strain 

space. A comprehensive review for thermoplasticity theory at finite strains can be found in [25-27].  

In [30] the strain and stress space thermoplasticity theories are considered and compared and is 

shown that the strain space constitutive relations and loading conditions depend only on strain tensor 

deviator and temperature and is convenient for formulation and numerical solution of the coupled 

boundary value problems. In [10] using the strain space constitutive relation the coupled 

thermoplasticity boundary value problem is formulated.  The coupled and uncoupled thermomechanical 

boundary value problems are numerically solved in following works [10-12, 17-20, 28].  

This paper deals with the numerical solution of the 2D coupled thermoplastic boundary value 

problems formulated using the strain space thermoplasticity theory [30]. Usually in numerical solution 

of strain space thermoplasticity problems the original problem is partitioned into several smaller sub-

problems, which are solved sequentially.  

In Section 2 the constitutive relations for strain space and stress space thermoplasticity theories are 

given. These constitutive relations considered in the case of piecewise linear approximation of the 

deformation diagram. By comparison, it is shown that the strain space thermoplastic constitutive relation 

is  more convenient for the modeling and numerical solution of the coupled thermoplasticity boundary 

value problems than the stress space thermoplasticity theory.  

In Sections 3 based on strain space thermoplastic theory the coupled boundary value problem 

consisting of the motion equation, constitutive relations and heat equations with a corresponding initial 

and boundary conditions are presented.  

In Sections 4, using the finite difference method, for coupled thermoplasticity boundary value 

problem, the explicit and implicit schemes are constructed. The explicit and implicit finite difference 

equations are solved using the recurrent formulas and elimination method, respectively. Note that in 

numerical solution of the coupled boundary value problems the external thermomechanical forces are 

gradually applied with a small increments and the results are found as a sum of the increments of 

corresponding values. 

In Section 5, the numerical examples for coupled boundary value problems are solved. Comparison 

of the numerical results received using the explicit and implicit finite difference equations shows a good 

coincidence. 

2.  Constitutive relations for strain space thermoplasticity theory 

There are two types of thermoplasticity theories, depending on the loading surfaces considered in the 

stress and strain spaces, in the theory of plasticity. Note that the right hand side of the strain space 

thermoplasticity constitutive relations depend on strain tensor and its deviators and temperature, whereas 

the stress space theory constitutive relations depend on the stress tensor and strain tensor deviators and 

temperature. For that the strain space thermoplasticity constitutive relations are convenient for 

formulation and numerical solution of the coupled boundary value problems.  

Let’s consider the constitutive relations of thermoplasticity with a loading surface in the strain space 

[10, 30] 

,
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T

F F
at F and dF d dT

T

   
 




   
    

   

 
   

 

  (2.1) 

where F  is the loading function of the following form 
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  (2.2) 

, ,ije T  are the strain tensor deviator, hardening parameter and absolute temperature, respectively; R 

– is an experimentally determined function. In the case of piecewise linear approximation, the 

constitutive relation (2.1) takes the form  
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For comparison, the constitutive relation of the stress space thermoplasticity theory is given [10] 
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 (2.4)  

The right hand side and the loading condition of (2.4) depend on the stress and strain deviators and 

temperature, whereas (2.3) depends only on strain tensor deviator and temperature. The dependence of 

the constitutive relations on strain tensors is convenient for formulation and numerical solution of the 

coupled thermoplasticity boundary value problems. It can be seen that the third term of the constitutive 

relations (2.3) and (2.4) are responsible for thermoelastic deformations, whereas the fifth is for 

thermoplastic deformations. If we neglect the temperature components in (2.1, 2.4), then follows from 

them the strain space plasticity theory proposed in [23]. 

3.  The coupled thermoplasticity boundary value problem 

Note that constitutive relations of the thermoplasticity theories have an incremental form. In formulating 

the coupled thermoplasticity boundary value problems, according to incremental constitutive relations, 

all equations, initial and boundary conditions should be written with respect to the increments of the 

unknowns and other quantities. So, the coupled boundary problem based on the flow theory consists of 

the motion equation  

, ,ij j i id dX du       (3.1) 

the constitutive relations of the strain space thermoplasticity theory (2.3) 

 2 ,
2 2

0 0;

F
d d d dT e de e e dT

ij ij ij ij kl kl ij ij T
u u

F
F and dF e de dT

ij ij T

   
      

 



   
    


   

 (3.2) 

the heat conduction equation for isotropic materials [21] 

0 , 0 0ii ijdT C dT T d        (3.3) 

and the Cauchy relations 

 , ,

1

2
ij i j j id du du       (3.4) 

with initial  



14th International Symposium on Geometric Function Theory and Applications

IOP Conf. Series: Journal of Physics: Conf. Series 1212 (2019) 012023

IOP Publishing

doi:10.1088/1742-6596/1212/1/012023

4

0 0

0 0

0
0

, ,

, ,

i i i it t t t

j j j jt t t t

t t

du du

dv dv

dT T

 

 

 

 



  



 





   (3.5) 

and boundary conditions  

0 0

0

0
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   (3.6) 

where C   a heat coefficient at a constant temperature,    a thermal expansion coefficient, 0   the 

heat  flow coefficient and F  a loading function in the strain space [21, 31]. Taking into account the 

loading function F from Eq. (2.2), the constitutive relation (3.2) can be written in the form 

2
2 ( ),ij ij ij ij ij kl kl

u

d d d dT e e de dT
 

       



       (3.7) 

where F T    ,   3 2    . 

The Eq.(3.1-3.6) in two-dimensional case take the following forms, respectively 

2
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where 

11 22 ,d d d      
2 2 2
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2
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2

du dv du dv
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. 

Substituting last expressions into Eq. (3.9) gives  
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 (3.10) 

and then inserting into Eq.(3.8) gives the motion and heat equations for displacement and temperature 

increments 
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  (3.13) 

where 0, , , , , ,C        are the given constants, 1 2,   the length of the rectangle sides, 

0 1 2, , , , , ,T T T      are the known values. The Eq.(3.11-3.13) present the 2D coupled strain space 

thermoplasticity boundary value problem. 
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4.  Finite difference equations for 2D coupled thermoplasticity boundary problem 

The Eq. (3.11-3.13) consisting of the two motions and one heat equations present the 2D coupled strain 

space thermoplasticity boundary value problem. Note that the equations depend on displacement and 

temperature increments ,du d  and dT , respectively. In order to construct the finite difference 

equations, the derivatives of displacement and temperature increments in Eq.(3.11-3.13) replacing by 

the corresponding difference quotients, we obtain  

1 1 1 1 1 1
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These equations can be resolved by means of 
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following recurrent formulas 
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The finite-difference analogues of the initial conditions (3.12) have the form 
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The boundary conditions (3.13) in the finite-difference case take the form 
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Taking into account the initial and boundary conditions (4.5 & 4.6), we can see that the finite 

difference Eq.(4.1 & 4.2) are explicit. Using the Eq.(4.3 & 4.4) and the initial and boundary conditions 

(4.5 & 4.6) we can find the displacement 
1 1

, ,,k k

i j i jdu dv 
 and temperature 

1

,

k

i jdT 
 increments, according  

to the increments of the external thermomechanical factors. Then the total displacement and temperature 

are found as a sum of increments of ( , , ), ( , , )du x y t dv x y t  and ( , , )dT x y t  i.e.  

,
p p

u du T dT    

where p-is a number of thermomechanical force increments. Note that the finite difference Eq. (4.1 & 

4.2) are implicit and the convergence of these schemes is slow and depends on mesh step lengths of 

1 2,h h  and  . In order to construct the schemes without convergence limitations, we should replace in 

Eq.(4.1 & 4.2) the index k  by 1k   for the first terms. Then we receive the implicit finite difference 

equations, which  after some transformations may be reduced to the following forms 
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For solving the Eqs. (4.7-4.9), the elimination method [24, 22] is used. 

5.  Numerical tests 

Consider the aforementioned coupled boundary value problem Eq. (3.11-3.13) in a rectangular area with 

sides 1 2, . Let’s all four sides of the rectangle be fixed and putted on them the temperature in a 

sinusoidal form as a boundary condition. At the initial moment 0t   the inner temperature in the 

rectangular is 0T . The described process is modeled as a boundary value problem by the Eqs.(3.11–3.13) 

with a following initial and boundary conditions:  
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, 

The values of the constants are chosen as follows: 

01, 1, 0.05, 0.5, ' 0.3         , 1.0  , 2.7C  , 12n  , 0.01  , 1 , 0 75T   

Note that in case of strain space thermoplasticity theory the considered boundary value problem, the 

applied external thermomechanical forces is partitioned into several smaller partitions. Then the general 

solution of the boundary problem may be represented as a sum of the solutions of the sub-problems 
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corresponding to the increments of the external load. Note that, Eqs. (3.11-3.13) are written with respect 

to increments (differentials) of temperature and displacement.  

Using the finite difference method the explicit and implicit schemes for the coupled thermoplasticiy 

boundary value problem were constructed. The explicit schemes are solved using the recurrent formulas 

for displacement U  and temperature T . For solving the implicit schemes, it is applied the elimination 

method [24, 22]. For the numerical solution of the finite difference equations was developed a software 

in C# integrated with MathCAD [32]. In Tables 1-2 the values of temperature obtained on explicit (Table 

1.) and implicit (Table 2.) schemes are given. Comparison of the tables shows that the values of T are 

coincide. Note that, taking into account the symmetricity of the boundary problem, the values of 

temperature are given in one fourth part of the considered rectangle.   
 

 Table 1. Distribution of the temperature by implicit scheme method  
x 

y 
0 0,1 0,2 0,3 0,4 0,5 0,6 

0 0 19,411 37,50 53,033 64,952 72,444 75 

0,1 19,411 47,449 61,285 67,765 71,627 73,929 74,708 

0,2 37,5 61,285 70,807 73,435 74,338 74,783 74,929 

0,3 53,033 67,765 73,435 74,678 74,907 74,972 74,991 

0,4 64,952 71,627 74,338 74,907 74,986 74,997 74,999 

0,5 72,444 73,929 74,783 74,972 74,997 74,999 75 

0,6 75 74,708 74,929 74,991 74,999 75 75 

 
Table 2. Distribution of the temperature according to the method explicit scheme 

x 

y 
0 0,1 0,2 0,3 0,4 0,5 0,6 

0 0 19,411 37,50 53,033 64,952 72,444 75 

0,1 19,411 48,029 61,758 68,032 71,756 73,978 74,731 

0,2 37,5 61,328 70,795 73,408 74,321 74,776 74,925 

0,3 53,033 67,704 73,373 74,637 74,886 74,964 74,987 

0,4 64,952 71,583 74,31 74,894 74,981 74,995 74,998 

0,5 72,444 73,892 74,766 74,968 74,996 74,999 75 

0,6 75 74,672 74,914 74,987 74,999 75 75 

 

                                

a).                                                                                                  b). 

Figure.1 a). Distribution of the temperature T in the rectangle. b). Distribution of the plasticity 

zones in the rectangle.  
 

In the Fig. 1 using the values given in the Tables 1-2 the distribution of the temperature and plasticity 

zones are shown. We can see from the Figure 1, that the highest temperatures are reached at the corners 

of the rectangle and accordingly, plastic zones also arise near the corners. 

6.  Conclusions 

The nonlinear deformation process of the solids was modelled using the strain space thermoplasticity 

theory. The modeling equations presented as a coupled thermoplasticity boundary value problem. Note 

that, in case of coupled boundary value problem, the motion equation and constitutive relations of the 
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thermoplasticity should be joint the heat conduction equations with a suitable initial and boundary 

conditions. Using the finite difference method an explicit and implicit schemes for two dimensions 

coupled boundary value problem was constructed. The numerical solution of the explicit finite 

difference equations reduced to the application of the recurrent formulas, whereas the implicit schemes 

solved  using the elimination method. The numerical results obtained using the explicit and implicit 

schemes shows a good coincidence. For the numerical solution of the finite difference equations a 

software in C# integrated with MathCAD was developed.  
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