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Abstract. Using the strain space thermoplasticity theory, proposed by the first author, the
coupled dynamic thermomechanical boundary value problems are formulated. The strain space
thermoplasticity theory, in contrast to the existing one, allows to formulate the coupled
thermoplastic boundary value problems for the displacement and temperature increments. The
explicit and implicit finite difference equations for two dimensions case of the boundary value
problems are constructed. The numerical solution of the explicit finite difference equations
reduced to the application of the recurrent formulas, whereas the implicit scheme reduced to the
application of the elimination method. Comparison shows that the numerical results obtained
using the explicit and implicit schemes for aforementioned methods are coincides.

1. Introduction

Thermo-mechanical coupling is the most common class of coupled problems, in which the mechanical
response of the structure depends on its thermal behavior and vice versa. The investigation of the joint
influence of the thermomechanical forces on the deformation process of materials is an actual problem
of solid mechanics and is usually referred as the coupled problem of the thermoelasticity or
thermoplasticity. Studies in the field of coupled thermoelasticity [1-4] and thermoplasticity [5-13] are
widely developed due to their many applications in the advanced structural design problems.

The coupled thermoelasticity problems investigated by Biot[1], Lord and Shulman|[2], Youssef][3],
introduced a generalized coupled theory with a wave-type heat equation. In [4] develops the theoretical
framework appertaining to coupled thermomechanical deformations of solids, subject to large as well
as inelastic deformations. The essential feature of the analysis is a consistent natural formulation which
encompasses also all thermodynamic aspects.

Simo and Miehe [5&29] present a complete formulation of a model of coupled associative
thermoplasticity at finite strains, addresses in detail the numerical analysis aspects involved in its finite
element implementation, and assesses the performance of the proposed mechanical and finite element
models in a comprehensive set of numerical simulations. The coupled thermoplasticity problems are
considered in [6-12]. The coupled visco-plasticity are considered by Stainier and Ortiz [8]. In [13], a
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variational formulation of the coupled thermo-mechanical boundary-value problem for general
dissipative solids is presented.

It is known that depending on the loading surfaces considered in the stress and strain spaces may be
formulated two types of constitutive relations of plasticity. The strain space formulation of plasticity
theory was proposed by Naghdi and Trapp [14], Casey and Naghdi [15] and was showed that plastic
strain rate is normal to the loading surface, whereas Yoder and Iwan [16] considered an alternative
associated flow law using so called a stress relaxation tensor normal to the loading surface in strain
space. A comprehensive review for thermoplasticity theory at finite strains can be found in [25-27].

In [30] the strain and stress space thermoplasticity theories are considered and compared and is
shown that the strain space constitutive relations and loading conditions depend only on strain tensor
deviator and temperature and is convenient for formulation and numerical solution of the coupled
boundary value problems. In [10] using the strain space constitutive relation the coupled
thermoplasticity boundary value problem is formulated. The coupled and uncoupled thermomechanical
boundary value problems are numerically solved in following works [10-12, 17-20, 28].

This paper deals with the numerical solution of the 2D coupled thermoplastic boundary value
problems formulated using the strain space thermoplasticity theory [30]. Usually in numerical solution
of strain space thermoplasticity problems the original problem is partitioned into several smaller sub-
problems, which are solved sequentially.

In Section 2 the constitutive relations for strain space and stress space thermoplasticity theories are
given. These constitutive relations considered in the case of piecewise linear approximation of the
deformation diagram. By comparison, it is shown that the strain space thermoplastic constitutive relation
is more convenient for the modeling and numerical solution of the coupled thermoplasticity boundary
value problems than the stress space thermoplasticity theory.

In Sections 3 based on strain space thermoplastic theory the coupled boundary value problem
consisting of the motion equation, constitutive relations and heat equations with a corresponding initial
and boundary conditions are presented.

In Sections 4, using the finite difference method, for coupled thermoplasticity boundary value
problem, the explicit and implicit schemes are constructed. The explicit and implicit finite difference
equations are solved using the recurrent formulas and elimination method, respectively. Note that in
numerical solution of the coupled boundary value problems the external thermomechanical forces are
gradually applied with a small increments and the results are found as a sum of the increments of
corresponding values.

In Section 5, the numerical examples for coupled boundary value problems are solved. Comparison
of the numerical results received using the explicit and implicit finite difference equations shows a good
coincidence.

2. Constitutive relations for strain space thermoplasticity theory
There are two types of thermoplasticity theories, depending on the loading surfaces considered in the
stress and strain spaces, in the theory of plasticity. Note that the right hand side of the strain space
thermoplasticity constitutive relations depend on strain tensor and its deviators and temperature, whereas
the stress space theory constitutive relations depend on the stress tensor and strain tensor deviators and
temperature. For that the strain space thermoplasticity constitutive relations are convenient for
formulation and numerical solution of the coupled boundary value problems.

Let’s consider the constitutive relations of thermoplasticity with a loading surface in the strain space
[10, 30]

do, =Cuds, —H L—SF de, +2—$de—§': —CyS,dT,
K Gjj
2.1)
at F=0 and dF :ﬁdgij +ﬁdT >0
o0& oT

ij
where F is the loading function of the following form
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1 R L\ 1
FEEeijeij—R(a),T)ZO, HZ(Z%SUZJ , guZ:Eeijeij (2.2)

e.,w, T are the strain tensor deviator, hardening parameter and absolute temperature, respectively; R

j?
— is an experimentally determined function. In the case of piecewise linear approximation, the
constitutive relation (2.1) takes the form

do, = 2d65, +2ude, (34 +2u) adT 5, - F—L (e, de, ), — e, OF ar,
&, &, oT (2.3)

at F=0 and dF =¢;de; +a—FdT >0.
oT

For comparison, the constitutive relation of the stress space thermoplasticity theory is given [10]

—u —u . of
do, = 2465, +2uds, (34 +24)adT s, J‘G—”(sklolek,)sij J‘G—j‘sij AT,

2

u u (2.4)
at f=0 and df =S;dS; +ﬁdT >0.
oT

The right hand side and the loading condition of (2.4) depend on the stress and strain deviators and
temperature, whereas (2.3) depends only on strain tensor deviator and temperature. The dependence of
the constitutive relations on strain tensors is convenient for formulation and numerical solution of the
coupled thermoplasticity boundary value problems. It can be seen that the third term of the constitutive
relations (2.3) and (2.4) are responsible for thermoelastic deformations, whereas the fifth is for
thermoplastic deformations. If we neglect the temperature components in (2.1, 2.4), then follows from
them the strain space plasticity theory proposed in [23].

3. The coupled thermoplasticity boundary value problem

Note that constitutive relations of the thermoplasticity theories have an incremental form. In formulating
the coupled thermoplasticity boundary value problems, according to incremental constitutive relations,
all equations, initial and boundary conditions should be written with respect to the increments of the
unknowns and other quantities. So, the coupled boundary problem based on the flow theory consists of
the motion equation

do, , +dX, = pdd,, (3.1)
the constitutive relations of the strain space thermoplasticity theory (2.3)
oy, = 4005, +2ude ~aydTs, ~“E e dey Je ~E - e, Far,
ij ij ij 2 kI™k1 ) i) 2 ot
u u (3.2)

F=0 and dF =e..de. +de >0;
- o7
the heat conduction equation for isotropic materials [21]
2,dT; —C,dT —Tyaydé, =0 (3.3)
and the Cauchy relations
1
de; =§(dui,j +du;;) (3.4)

]

with initial
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dui't o :¢l’ dul o, — Vi
dv; = ¢, AV, = 7 (3.5)
dT |t:t T,

and boundary conditions

(3.6)
i
where C_ — a heat coefficient at a constant temperature, « — a thermal expansion coefficient, A, — the

heat flow coefficient and F —a loading function in the strain space [21, 31]. Taking into account the
loading function F from Eq. (2.2), the constitutive relation (3.2) can be written in the form

do—lj =/1d€5ij +2ﬂd5ij _0‘7dT5ij _#eij (e de, +4dT), (3.7)
gu
where B =0F/0T, y=31+2u.

The Eq.(3.1-3.6) in two-dimensional case take the following forms, respectively

a(d011)+8(d612)+dx :pﬁz(du)
X oy !

ot’
) (3.8)
a(d021)+8(do_22)+dx =,Oa (dv)
X oy 2 ot

u

doy, = Ad0+2ude, —aydT — ”8;2” e, (e, de,, +e,,de,, +2e,de, + AdT),

do,, = A0+ 2uds,, —aydT £ e, (¢, de,, +¢,,de,, + 2¢,,de,, + AdT),  (3.9)
gu

do, = 2ude, ~*"H e _(e,d de,, +2e,,d dT);

Oy, = cfléy, &2 e, (€,,de;; +e,,dey, +2e,de;, + 4dT);

where

1
df=dg,+de,, ¢, = \/E(elzl +6222 +2€122),

o(du o(dv 1( o(du
de, = (ax)’ de,, = ( )’ dng__[( )

oy 2

Substituting last expressions into Eq. (3.9) gives

.\ a(dv)j |
oy OX
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doy, = (A+2u )a(du)+ﬂd o(dv)

—aydT - # 8_2# e, (e, de, +e,,de,, +2e,de, + AdT),
—u' 3.10
—aydT - ”g—zﬂ e,,(e,de, +e,,de,, +2e,de, + £dT), ( )

u

do,, = Ad M+(l+2y)w
ox oy

o(du) a(dv)) -
oy &

and then inserting into Eq.(3.8) gives the motion and heat equations for displacement and temperature
increments

doy, = u( e, (6,de,; +ey,de, +2e,de, + AdT);

az(du) 0% (du) o’(dv) o(dT) . 9%(du)
(A+2p) +u Y +(A+p) Y ay =~ é—p—atz :
At )+(z+2 204G ey D o800
%{aa(dT) 0 (dzT)} c a(olT)_WT {aZ(du) 0 (dv)} 0
X2 oy ot oxot  oyet
where
o(dey) . 9(dey) o(dey,) , ,0(dT)
é_,:/u—/,l’ 11(ell 8X +eZZ 8X +2e12 6X +ﬁ aX )+
8l12 +e12(ell a(dell) +e22 a(deZZ) +2€12 a(deIZ) +ﬂa(dT))
L oy oy oy oy
o (6, 20080) ,, Aen) p Odey) | po(dT), |
Fo K oy oy oy oy
& o(de,) . O(dey) o(de,) ,0(dT)
_+e12(ell o +€, o +2€, o +f )
with an appropriate initial and boundary conditions
o(du)
du (X’ y’t)‘tzo - ¢(X’ y)’ T = l//(X, Y),
vyl =y S gy, (312)
dT (%, y.t)_ =T,
du(x,y,t) ,, =Uo du(x,y,t)] . =0,
dv(xy.t), ,, =Vor dv(x, y,t)‘yzw =V, (3.13)
dT(X’ y't)|xzo'[ =T1(t)’ dT(X’ y’t)|y:0,( =T2(t)

where A, u, 1/, B3,C,, A,— are the given constants, (,,(,— the length of the rectangle sides,

o, v, @, v, T,, T, T, — are the known values. The Eq.(3.11-3.13) present the 2D coupled strain space
thermoplasticity boundary value problem.
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4. Finite difference equations for 2D coupled thermoplasticity boundary problem

The Eq. (3.11-3.13) consisting of the two motions and one heat equations present the 2D coupled strain
space thermoplasticity boundary value problem. Note that the equations depend on displacement and
temperature increments du,dv and dT , respectively. In order to construct the finite difference
equations, the derivatives of displacement and temperature increments in Eq.(3.11-3.13) replacing by
the corresponding difference quotients, we obtain

—2du;; +du, du;,, —2duy +du; dTX, —dTX.
(ﬂ+2,u) |+1J hlz +,U IJ+1 h2 ij-1 |+1]2h1 i-1j _é:i;( +
b
+(A+ ) OV = AV — OV OV ) du;™ — 2duyf + dug™
nh i (4.1)
dvfiy; —2dvi +dvi, dvy,, —2dv) +dv; dTf, —dTf, . '
— Lt (A+2u)— MRS Tis -
hy h; 2h,
+ (ﬂ, + ,U) uik+1j+l - duik+1j—1 - duik—1j+1 + duik—lj_l _ dv ,IJHl - 2dV + de -
4hh, 7’
k k k K K+ K=
ﬂo(dTHlJ ZdI +dT_1, . dTIJ+l 2d1' +dTu_1) c. dTij l—dTij ! _
h, h, 27 42)
duikjllj —du |k+llj _du|k+llj dulk:llj dvlij(jj dv:l(+i dvl]+1 +dVIJ -1 .
—ayTy( )=0.
4hz 4h,r

These equations can be resolved by means of du™* dVk+l and dT; kil

ij !
following recurrent formulas

respectively, and we get the

du’ U 2du +duf, du’ Ujja —2du’ +duIJ g
,| (A+2p) 3 L+ p 2 i
duf == g " +2duf —duf?
" p| dTK, —dTY VE L —dve, v, dvE v
ay i+1j (ﬂ,—}- ) |+lj+1 i+1j-1 i-1j+1 i-1j-1
2h1 4hh, (4.3)
[ (ar 2 L Z:Z M B 2:; LT -
k+1 T 2 k k=1
W= AT, —dT, du,  —du*,  —du¥,  +duf, . oy
ay ij+ +(l+ﬂ) i+1j+ i+1j- i—1j+ i-1j—
2h, 4hh,
k+1 k+1 k-1 k-1 k+1 k+1
(Z}/T (dui+lj d i-1j _duH—l] +du| -1j dvlj+l dvu -1 dVI]+1 +dvl] -1
o2 e At (4.4)
! C, TS, —20Tf +dTY, dTS, -20TF+dTS C | '
— + )——=dT,
hf h22 2r "

The finite-difference analogues of the initial conditions (3.12) have the form
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dug =g, dvi =y
duj; = dug + 7y, dvi = dv; +717;; (4.5)
dT) =T,

The boundary conditions (3.13) in the finite-difference case take the form

kY kY
duy; =ug, duy; =0

dvé. =vY, dvl . =vY =0,
0j 0r UVnj 0
dvi, =v), dvi, =V
Co i=0.N, (4.6)
dug, = U, duiN2 = Uy
k k k T Kk
dTOj :TXJ ) dTNlj =TXJ k _ O,_M

dT =Ti;, dTi§2 =Tk

iy

Taking into account the initial and boundary conditions (4.5 & 4.6), we can see that the finite
difference Eq.(4.1 & 4.2) are explicit. Using the Eq.(4.3 & 4.4) and the initial and boundary conditions
(4.5 & 4.6) we can find the displacement duik;l, dvik’;1 and temperature dT, !‘jﬂ increments, according
to the increments of the external thermomechanical factors. Then the total displacement and temperature
are found as a sum of increments of du(X, y,t), dv(x,y,t) and dT (X, y,t) i.e.

u=>du, T=>dT
p p

where p-is a number of thermomechanical force increments. Note that the finite difference Eq. (4.1 &
4.2) are implicit and the convergence of these schemes is slow and depends on mesh step lengths of

h,, h, and 7 . In order to construct the schemes without convergence limitations, we should replace in

Eq.(4.1 & 4.2) the index K by K+1 for the first terms. Then we receive the implicit finite difference
equations, which after some transformations may be reduced to the following forms

aijdui?jr—i +l)|jdui?+l +Cijdui?j = fij (4-7)
Aj dVikJ:fj + Bij dvilj+l +Cij dVik:fj = Fij (4-8)
é‘ij dT.ELl + 6.1 d-l-ijk+1 + cij d-I-IE]JjL =@ (4.9)
where
_H _ H P _H
a“—h—zz, bij——zh—zz—?, Cij—h—zz,
dTX . —dTX. du¥,. —2du +du’,.
fij =0(]/ |+112h1 i-1j _(2’4_2#) i+1j hlzu i-1j + i;< _
_ (/I n ,U) dvik+1j+l - dvik+1j—1 - dvik—1j+l + dvik—lj—l +p ui?_l - 2ui';
4hh, 72
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Vd _ K

U
AJ:E’ Bij:_zg 22 Cij_hf’

dT*, —dT¥ dvf,, —2dvE +dvf
F—- —a ij+1 ij-1 _ ﬂ,-i— 2 ij+1 ij ij-1 k _
ij 7/ 2h2 ( /U) h22 ij
duf, . —du*. . —du¥, . . +du’,. vkt oy
_ (/1 + ﬂ) i+1j+1 i+1j-1 i-1j+1 i-1j-1 + p ij - ij
4hh, 7
aij:%, Bij:—Z%—g—;, Cu‘:%1
o =ayT (duik:llj B duikjllj B duik;llj + duik:llj dviljfifll.. B dVi?j B dvii;j + dviﬁ )—
! ’ ahz 4h,r
_/10 dTijk+l B 2dTijk + dTijk—l _&d-l-“k—l
h? 2t "

For solving the Egs. (4.7-4.9), the elimination method [24, 22] is used.

5. Numerical tests
Consider the aforementioned coupled boundary value problem Eq. (3.11-3.13) in a rectangular area with

sides (,,(,. Let’s all four sides of the rectangle be fixed and putted on them the temperature in a

sinusoidal form as a boundary condition. At the initial moment t =0 the inner temperature in the
rectangular is T, . The described process is modeled as a boundary value problem by the Eqs.(3.11-3.13)

with a following initial and boundary conditions:

ou(x,y,t
u(xy.t)_, =0, %t_o =0,
v(x,y.t)|_, =0, WFO =0,
T(x, y,t)L:0 =T,,
u(x, y’t)x,y=0 -0, u(x, y,t)ny=1 =0,
v(X, y,t)X‘y:0 =0, v(X, y,t)‘xyyzl =0,
T (% Y1), =To-sin(y;-7), |

T YY), =To-sin(x 7).

The values of the constants are chosen as follows:
A=14,=La=0.05 =05 4'=03, p=10,C,=27,n=12, =001, (=1, T, =75

Note that in case of strain space thermoplasticity theory the considered boundary value problem, the
applied external thermomechanical forces is partitioned into several smaller partitions. Then the general
solution of the boundary problem may be represented as a sum of the solutions of the sub-problems
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corresponding to the increments of the external load. Note that, Eqgs. (3.11-3.13) are written with respect
to increments (differentials) of temperature and displacement.

Using the finite difference method the explicit and implicit schemes for the coupled thermoplasticiy
boundary value problem were constructed. The explicit schemes are solved using the recurrent formulas
for displacement U and temperature T . For solving the implicit schemes, it is applied the elimination
method [24, 22]. For the numerical solution of the finite difference equations was developed a software
in C# integrated with MathCAD [32]. In Tables 1-2 the values of temperature obtained on explicit (Table
1.) and implicit (Table 2.) schemes are given. Comparison of the tables shows that the values of T are
coincide. Note that, taking into account the symmetricity of the boundary problem, the values of
temperature are given in one fourth part of the considered rectangle.

Table 1. Distribution of the temperature by implicit scheme method

yx 0 01 0,2 0,3 0.4 05 06
0 0 | 19411 | 3750 | 53,033 | 64952 | 72444 | 75

0,1 | 19,411 | 47,449 | 61,285 | 67,765 | 71,627 | 73,929 | 74,708
02| 375 | 61,285 | 70,807 | 73,435 | 74,338 | 74,783 | 74,929
0,3 | 53,033 | 67,765 | 73,435 | 74,678 | 74,907 | 74,972 | 74,991
0,4 | 64,952 | 71,627 | 74,338 | 74,907 | 74,986 | 74,997 | 74,999
05 | 72,444 | 73,929 | 74,783 | 74,972 | 74,997 | 74,999 75
0,6 75 74,708 | 74,929 | 74,991 | 74,999 75 75

Table 2. Distribution of the temperature according to the method explicit scheme

yx 0 0.1 0.2 03 04 05 06
0 0 | 19411 | 3750 | 53,033 | 64952 | 72,444 | 75

0,1 | 19,411 | 48,029 | 61,758 | 68,032 | 71,756 | 73,978 | 74,731
02| 375 | 61,328 | 70,795 | 73,408 | 74,321 | 74,776 | 74,925
0,3 | 53,033 | 67,704 | 73,373 | 74,637 | 74,886 | 74,964 | 74,987
0,4 | 64,952 | 71,583 | 74,31 | 74,894 | 74,981 | 74,995 | 74,998
0,5 | 72,444 | 73,892 | 74,766 | 74,968 | 74,996 | 74,999 75
0,6 75 74,672 | 74,914 | 74,987 | 74,999 75 75

a). b).

Figure.l a). Distribution of the temperature T in the rectangle. b). Distribution of the plasticity
zones in the rectangle.

In the Fig. 1 using the values given in the Tables 1-2 the distribution of the temperature and plasticity
zones are shown. We can see from the Figure 1, that the highest temperatures are reached at the corners
of the rectangle and accordingly, plastic zones also arise near the corners.

6. Conclusions

The nonlinear deformation process of the solids was modelled using the strain space thermoplasticity
theory. The modeling equations presented as a coupled thermoplasticity boundary value problem. Note
that, in case of coupled boundary value problem, the motion equation and constitutive relations of the
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thermoplasticity should be joint the heat conduction equations with a suitable initial and boundary
conditions. Using the finite difference method an explicit and implicit schemes for two dimensions
coupled boundary value problem was constructed. The numerical solution of the explicit finite
difference equations reduced to the application of the recurrent formulas, whereas the implicit schemes
solved using the elimination method. The numerical results obtained using the explicit and implicit
schemes shows a good coincidence. For the numerical solution of the finite difference equations a
software in C# integrated with MathCAD was developed.
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