
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

DEM calibration approach: orthogonal experiment
To cite this article: A V Boikov et al 2019 J. Phys.: Conf. Ser. 1210 012025

 

View the article online for updates and enhancements.

You may also like
THERMAL DIAGNOSTICS WITH THE
ATMOSPHERIC IMAGING ASSEMBLY
ON BOARD THE SOLAR DYNAMICS
OBSERVATORY: A VALIDATED
METHOD FOR DIFFERENTIAL
EMISSION MEASURE INVERSIONS
Mark C. M. Cheung, P. Boerner, C. J.
Schrijver et al.

-

The Solar Minimum Eclipse of 2019 July 2.
III. Inferring the Coronal Te with a
Radiative Differential Emission Measure
Inversion
Benjamin Boe, Cooper Downs and Shadia
Habbal

-

A machine vision system for automatic
sieve calibration
Peterson A Belan, Sidnei A Araújo and
André Felipe H Librantz

-

This content was downloaded from IP address 18.119.139.50 on 26/04/2024 at 08:12

https://doi.org/10.1088/1742-6596/1210/1/012025
https://iopscience.iop.org/article/10.1088/0004-637X/807/2/143
https://iopscience.iop.org/article/10.1088/0004-637X/807/2/143
https://iopscience.iop.org/article/10.1088/0004-637X/807/2/143
https://iopscience.iop.org/article/10.1088/0004-637X/807/2/143
https://iopscience.iop.org/article/10.1088/0004-637X/807/2/143
https://iopscience.iop.org/article/10.1088/0004-637X/807/2/143
https://iopscience.iop.org/article/10.3847/1538-4357/acd10b
https://iopscience.iop.org/article/10.3847/1538-4357/acd10b
https://iopscience.iop.org/article/10.3847/1538-4357/acd10b
https://iopscience.iop.org/article/10.3847/1538-4357/acd10b
https://iopscience.iop.org/article/10.3847/1538-4357/acd10b
https://iopscience.iop.org/article/10.3847/1538-4357/acd10b
https://iopscience.iop.org/article/10.3847/1538-4357/acd10b
https://iopscience.iop.org/article/10.1088/1361-6501/ab37c0
https://iopscience.iop.org/article/10.1088/1361-6501/ab37c0
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjssoGIm7jeGOR92JKP3614Pxwmgk7-5a1AB-b3jnl5FB9NgGdedKu0I5d0fDAjXDaHC6EVJqjgCEksc8R0nUNTXiB54A_CU78S04XZz_jN-YnFZdSLISd2MbVsBTmi4BnPnRnLYiJn7P8sMLaiSJAbGeeqjkpvS15MzqMwQI3Kxry5J0vSB6zJYMFOGZFCZ_65YmDrusboh7JAICft8r9a221ZEGW95yG3aQ971mc8heHbVpR8dg10LsbML0mSapzIn6kHQuj4NiZN8zE7F8JIy2NsRv5B1EsVLVYmMq6Hl3y4q__pNra86Zq897lHsVMao7fxANYLR7PcWQYWlOFZV9RIQAgg&sig=Cg0ArKJSzHtXc8PsfqQ8&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

AMSD 2018

IOP Conf. Series: Journal of Physics: Conf. Series 1210 (2019) 012025

IOP Publishing

doi:10.1088/1742-6596/1210/1/012025

1

 
 
 
 
 
 

DEM calibration approach: orthogonal experiment 

A V Boikov, R V Savelev, V A Payor and N V Vasileva 
Saint-Petersburg mining university, 21 line V.О, Saint-Petersburg, 2, 199106, Russia 

e-mail: boikov_av@mail.ru 

Abstract. The research considers conducting orthogonal experiment (OT) as one of the stages 
in developing a new discrete element method (DEM) parameters calibration approach. The 
measured responses in experiment are the parameters obtained by DEM animation processing 
using machine vision system (MVS). The variable factors in experiment are DEM parameters. 
A brief overview of an existing calibration approaches given in the article. The choice of OT as 
a design of experiment tool among other mathematical tools discussed. Experiments conducted 
using specially developed rig where bulk material’s flow captured as DEM animation. DEM 
animation converted to video and then processed using MVS that allow register the values of 
such parameters as angle of repose or expiration time (measured responses). The results of the 
OT show that it is possible to identify four measured responses with the most valuable 
correlation coefficient. DEM parameters with the biggest influence on the measured responses 
identified for each of the obtained regression. Obtained results are useful in learning or 
iterative algorithms development for DEM parameters calibration. 

1. Introduction 
Discrete Element Method (DEM) is the most popular tool for the numerically calculating a large 
number of individual particles (bulk materials). DEM is used in various applications to optimize 
equipment in the mining and metallurgical or chemical industries (often used in integration with 
Computational Fluid Dynamics and Finite Element Analysis) [1–4, 21]. 
Despite the increasing popularity of DEM software before simulation starts users question what data 
about their bulk material should be implemented in the model. If parameters such as Poisson's ratio, 
Young's modulus and Density can be easily measured directly, then disagreements arise when 
matching static and dynamic friction coefficients or coefficient of restitution. The selection of such 
coefficients values which would provide appropriate rheological characteristics of simulated bulk 
material is called DEM parameters calibration [5-6]. 
DEM parameters calibration approaches are divided in to three groups: Direct Measurement Approach 
(DMA), Bulk Calibration Approach (BCA), and combined approach [7]. The principle of DMA is to 
measure all of the DEM parameters directly. The main problem with this approach is that each of the 
coefficients must be measured for an individual particle which could have different shapes and sizes 
within one bulk material [8]. This method is often used when simulating particles with the same shape 
and size (for example, in pharmacology [9]). Usually, a series of experiments are carried out and the 
results of the experiments are then averaged. In addition, the resulting coefficient values do not 
necessarily ideally reproduce the bulk material rheology in the DEM software, since existing DEM 
models can not accurately take into account absolutely all physical phenomena [10]. 
Very often, when integrating with DMA or separately, BCA is used to obtain appropriate values for 
DEM parameters. The BCA principle consists in iterative or algorithmic comparison of coefficients. 
The series of experiments stopping criteria is the achievement of proper rheological characteristics of 
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the material. It means that characteristics obtained during experiment in the field as closely as possible 
matches the simulation results. Currently, this approach is actively developed by many researchers. 
Some of them offer conceptual solutions for accelerating the iterative matching of parameters [11–12], 
other use Generic Algorithms (GA) or Neural Networks (NN) to obtain DEM parameters [13, 15]. 
Another approach is to conduct the plan of experiment (PE) to determine the mathematical model of 
the measured response (for example, the angle of repose) from the varying DEM parameters. This 
approach is often used in the calibration of DEM parameters for bulk materials with certain physico-
mechanical properties [16-17]. Moreover, a lot of researchers offer their own conceptual approaches 
[18–19, 14], based on this approach. 
The original idea of this research is to conduct orthogonal experiment (OE) to determine a regression 
model, where the DEM parameters are the variable factors. The measured responses are the 
parameters obtained by DEM animation processing using the machine vision system (MVS) [22]. The 
choice of OE is justified by the fact that seven parameters variation at three levels guarantees the 
number of experiments equal to 2187. Conducting such number of experiments requires considerable 
computing power. The OE, however, makes it possible to conduct a second-order plan with the 
number of experiments equal to 143. 
 
2. Mathematical model 
Orthogonal experiment is a second-order plan. The main difference between the second-order and 
first-order plans is that when determining the regression, a quadratic influence of the varied factors on 
the response is taken into account. The design of experiment with factors x1 and x2 in figure 1 cannot 
consist only of experiments 1, 2, 3, 4 located at the vertices of the square of the PE 22 as it was for the 
first-order model. Experiments (star points) 5, 6, 7, 8 located on the axes x1 and x2 with coordinates 
(± α; 0), (0; ± α) and experiment 9 in the center of the square must be added to them. The purpose is 
that in any direction (5-9-6), (1-9-4), etc. there were three points determining the curvature of the 
surface in this direction. In the general case, the regression equation is: 

 ' '
0

1 1 1

k k k

i i iu i u i i
i i i

y b b x b x x b x
= = =

= + + +∑ ∑ ∑   (1) 

where y  – response, 0b  – nondimensional coefficient, ib  – the linear coefficient at the factor, k – the 

number of parameters, iub  –  coefficient of parameters paired influence, '
ib –  coefficient parameters 

quadratic influence, , uix x – the coded value of the factor, '
ix – the coded value of the quadric influence 

factor. 
The regression’s b coefficients are calculated according to well-known equations. The resulting 
regressions will contain information about the DEM parameters influence on the responses (for 
example, the angle of the repose) for a particular bulk material. It is possible to evaluate the possibility 
of using the measured response for DEM parameters calibration (with correlation coefficient). 

 
Figure 1. Orthogonal experiment with two factors 

 

3. Experiment preparation 
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DEM parameters calibration approach using PE or OE involves conducting a series of experiments for 
bulk material with certain physical and mechanical properties. It was decided to simulate a gravel-like 
material with a spherical particles 8 mm diameter. The shape and diameter were chosen due to the 
simplification of the numerical calculation (selected bulk material is an example for the approach). In 
addition, the maximum particles diameter is limited by the size of the rig, which will be discussed 
later. A non-linear DEM model is selected for simulation. The remaining parameters of the bulk 
material are summarized in table 1. 
Next step is to determine the variable factors. The factors are DEM parameters that require calibration. 
Since the simulated particles are spheres rolling resistance (RR) was also taken into account. All 7 
calibrated parameters are summarized in table 2. 
Specially designed rig (figure 2) was used in the experiments. The design of the rig assumes the 
presence of two removable dampers. After the first one removes the angle of rupture is formed and the 
after the second - the angle of repose. The walls of the rig are made of transparent plexiglas to make 
possible bulk material flow analyzing using a high-speed camera to capture the video [22]. The rig has 
a particles diameter limitation - no more than 10 mm to ensure particles free flow. 3D CAD model was 
loaded into Rocky DEM software [20] for numerical simulations. An example of the bulk material 
outflow and the angles of repose and rupture formation is shown in figure 3. 

Table 1. Simulated bulk material parameters 
Parameter Value 

Poisson’s ratio 0.3 
Young modulus 106 kPa 
Density, kg/m3 1300 

Shape sphere 
Particle size distribution 100% 8 mm diameter 

Contact model Non-linear 
Gravity acceleration 9.81 m/s2 

 
Table 2. Calibrated DEM parameters 

Particle-Particle Static Friction Dynamic Friction Restitution Rolling 
resistance Particle-Boundary Static Friction Dynamic Friction Restitution 

 

 
Figure 2. Designed rig 
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Figure 3. Bulk material simulation example 

4. Experiment handling 
First of all, we need to determine OE points for the DEM parameters (factors). The center point of the 
experiment is taken as 0.5 for each parameter. Accordingly, +1 - 0,65; -1 - 0.35; + α - 0,8; -α = 0.2. In 
the 143 experiments OE plan takes the form as shown in table 3. 
The measured responses in experiments are the parameters obtained by processing the bulk material 
behavior DEM animation using a machine vision system. The rig design and image processing 
algorithms allow to extract up to 43 different parameters. However, among them, 4 most unique 
parameters were identified: the angle of repose and the angle of rupture (figure 4), the expiration time 
(figure 5) and the visual image "parabola" (figure 6). 

Table 3. Orthogonal experiment plan 
N X0 SFpp SFpb DFpp DFpb CoRpp CoRpb RR SFppSFpb … SF’pp … 
1 +1 -1 -1 -1 -1 -1 -1 -1 +1 … 0,1 … 
2 +1 -1 -1 -1 -1 -1 -1 +1 +1 … 0,1 … 
3 +1 -1 -1 -1 -1 -1 +1 -1 +1 … 0,1 … 
4 +1 -1 -1 -1 -1 -1 +1 +1 +1 … 0,1 … 
5 +1 -1 -1 -1 -1 +1 -1 -1 +1 … 0,1 … 
6 +1 -1 -1 -1 -1 +1 -1 +1 +1 … 0,1 … 
7 +1 -1 -1 -1 -1 +1 +1 -1 +1 … 0,1 … 
8 +1 -1 -1 -1 -1 +1 +1 +1 +1 … 0,1 … 
9 +1 -1 -1 -1 +1 -1 -1 -1 +1 … 0,1 … 
… … … … … … … … … … … … … 

128 +1 +1 +1 +1 +1 +1 +1 +1 +1 … 0,1 … 
129 +1 +α 0 0 0 0 0 0 0 … -0,26 … 
130 +1 -α 0 0 0 0 0 0 0 … -0,26 … 
131 +1 0 +α 0 0 0 0 0 0 … -0,9 … 
132 +1 0 -α 0 0 0 0 0 0 … -0,9 … 
133 +1 0 0 +α 0 0 0 0 0 … -0,9 … 
134 +1 0 0 -α 0 0 0 0 0 … -0,9 … 
135 +1 0 0 0 +α 0 0 0 0 … -0,9 … 
136 +1 0 0 0 -α 0 0 0 0 … -0,9 … 
… … … … … … … … … … … … … 

143 +1 0 0 0 0 0 0 0 0 … -0,9 … 
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The expiration time from the funnel is interpreted through the material’s filling degree in the 
expiration area. The time origin is taken at the moment of the second damper removing. The end of 
countdown is when the value filling degree becomes less than 4% (the threshold is obtained 
empirically). The visual image “parabola” is obtained by image filtration and extracting the points 
contour on a fixed frame in each experiment. The resulting contour is approximated in the parabola 
equation y = ax2+bx +c by the least squares method. Thus, it is possible to extract up to 3 parameters: 
the parabola coefficients a, b and c. 

 
Figure 4. Angles of rupture and repose interpretation  

 

 
Figure 5. Expiration time interpretation 

 

 
Figure 6. Visual image “parabola” interpretation 

 
5. Experiment results 
Six regression dependences of the form (1) between the DEM parameters and the measured responses 
(the angles of repose and rupture, the parabola coefficients a, b and c, and the expiration time) were 
obtained by results of experiment. The correlation coefficient and the mean error between the 
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experimental and model values of the response were calculated for each of the regression. The 
correlation coefficients for each of the regression are shown in table 4. 
It is quite obvious that the coefficients of parabola b and c are not of any interest. The values of these 
coefficients as measured responses do not practically change from the DEM parameters variation, 
which leads to low correlation coefficients values for the regressions. The remaining 4 parameters 
have a high correlation coefficient values and show a very high (angle of repose) and high (remaining) 
bonding. Figure 7 graphically demonstrates the distribution of the experimental and model responses 
values for all the experiments. 
As can be seen in fig. 7 the points field for each of the dependencies almost exactly lies at 450 angle, 
which indicates the absence of a static error and any disturbance is random. The average deviation 
(error) between the experimental and model responses values are given in table 5. 
 

Table 4. Correlation coefficients for the obtained regressions 
Response Correlation coefficient 

Angle of repose 0.903 
Parabola A 0.816 

Expiration time 0.794 
Angle of rupture 0.725 

Parabola B 0.474 
Parabola C 0.223 

 

 
Figure 7. Graphical interpretation of experiment and model values distribution 
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Table 5. Average error between experiment and model response values 
Response Error, % 

Angle of repose 1,13 
Parabola A 0,15 

Expiration time 0,41 
Angle of rupture 0,24 

 
Table 6. DEM parameters influence on the measured responses 

Response DEM parameters influence in descending order (from left to right) 
Angle of repose DFpb RR DFpp CoRpp SFpp CoRpb SFpb 

Parabola A RR DFpp SFpp CoRpp SFpb DFpb CoRpb 
Expiration time DFpb DFpp RR SFpp CoRpp CoRpb SFpb 
Angle of rupture RR SFpp CoRpp DFpp DFpb CoRpb SFpb 

 
The average error values are almost equal to 0, which indicates a random error distribution in all 
experiments and absence of the methodological error. This means that the error value does not depend 
on the geometry of the developed rig or on the applied image processing algorithms. 
The regression’s b coefficients help to evaluate the influence degree of the variable DEM parameters 
on the measured responses. DEM parameters, sorted in descending order of the coefficient b value for 
each of the responses, are presented in table 6. 
In all cases, rolling resistance has a strong influence on responses, which is an expected result, because 
experiments were held with spherical particles. In addition, there is a noticeable difference between 
the angle of repose and rupture. For the angle of rupture static friction is more important parameter 
than dynamic and for the angle of repose dynamic friction has stronger influence rather than static. 
There is also a general trend of a particle-particle interaction higher influence than particle-boundary. 
This means that the behavior of bulk material is more dependent on the interaction between the 
particles than on the interaction between particles and the surface (boundary). 
 
6. Conclusion 
Conducting orthogonal experiment where the variable factors are DEM parameters, and the responses 
are parameters measured by machine vision system, gives a lot of useful information that can be used 
in developing new DEM parameters calibration approach. Obtaining regression dependencies and 
evaluating its adequacy with correlation coefficient identifies responses that can be applied in learning 
algorithms (machine learning or generic algorithms). For experiment conducted in this research such 
parameters are the angles of repose and rupture, expiration time and the “parabola” coefficient A. In 
addition, DEM parameters influence on measured responses data can be applied in iterative algorithms 
where calibration is performed by blind DEM parameters variation. As an example to achieve the 
desired angle of repose, you should start variation form dynamic friction for particle-boundary 
interaction and rolling resistance (if simulating spheres), since they exert the strongest influence on the 
angle of repose. 
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