Hamiltonian $U(2)$-actions and Szegö kernel asymptotics

Andrea Galasso and Roberto Paoletti
Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
E-mail: andrea.galasso@unimib.it, roberto.paoletti@unimib.it

Abstract. In this paper we shall review some recent results on the asymptotic expansion of the equivariant components of an algebro geometric Szegö kernel determined by the linearization of a Hamiltonian action of $U(2)$ (with certain assumptions). We shall build on the techniques developed in [13], [1], and [11], and therefore ultimately on the microlocal description of the Szegö kernel as a Fourier integral operator in [3].

1. Introduction
Suppose that M is a connected projective manifold of complex dimension d, and let A be an ample line bundle on it. Let h be an Hermitian metric on A, such that the unique connection on A compatible with both the complex structure and the Hermitian metric has curvature $\Theta = -2i\omega$, where ω a Hodge form. In particular, ω^d is a volume form on M; we shall denote by dV_M the associated density.

Let A^\vee be the dual line bundle to A, endowed with the induced metric, and consider the unit circle bundle $X \subseteq A^\vee$; thus X is a principal S^1-bundle on M, with projection $\pi : X \to M$. The connection on A corresponds to a (normalized) connection 1-form α on X, such that $d\alpha = 2\pi^*(\omega)$. Then $(\alpha/2\pi) \wedge \pi^*(\omega)^d$ is a volume form on X; dV_X will denote the associated density.

Since ω is Kähler, (X, α) is a contact CR manifold. Let us denote by $H(X) \subseteq L^2(X)$ its Hardy space, by $\Pi : L^2(X) \to H(X)$ the orthogonal projector (the Szegö projector), and by $\Pi \in \mathcal{D}'(X \times X)$ its distributional kernel (the Szegö kernel). It is a well-known foundational result, due to Boutet de Monvel and Sjöstrand, that Π is a Fourier integral operator with complex phase ([3], [2], [11]).

Since the CR structure of X is S^1-invariant, there is a naturally induced unitary representation of S^1 on $H(X)$; therefore, $H(X)$ splits unitarily and equivariantly as a direct sum of isotypical components:

$$H(X) = \bigoplus_{k \in \mathbb{Z}} H(X)_k,$$

where $H_k(X) \subset H(X)$ is the subspace of CR functions that transform like the character $e^{ik\theta}$. We have $H(X)_k = 0$ if $k < 0$, and for $k \geq 0$ there is a natural unitary isomorphism between $H(X)_k$ and $H^0 \left(M, A^{\otimes k} \right)$. In particular, every $H(X)_k$ is finite-dimensional.
Thus we have
\[\Pi = \sum_{k \geq 0} \Pi_k, \]
where \(\Pi_k : L^2(X) \to H(X)_k \) is the orthogonal projector. The distributional kernel of \(\Pi_k \) (or reproducing kernel of \(H(X)_k \)) is a function \(\Pi_k \in C^\infty(X \times X) \), and its asymptotic behavior has been extensively investigated, starting with the on-diagonal asymptotics of \([12],[4],[13]\). The most relevant approach for our discussion is the one developed in \([13],[1],[11]\) (we refer to the introductions of \([6]\) and \([7]\) for a somewhat wider discussion and reference list).

Specifically, as \(k \to +\infty \) we have

(i) if \(x, y \in X \), and \(x \not\in S^1 \cdot y \), then
\[\Pi_k(x,y) = O(k^{-\infty}); \]

(ii) if \(x, y \in X \) and \(g, h \in S^1 \), then (denoting \(r_g : X \to X \) the action of \(g \) on \(X \))
\[\Pi_k(r_g(x), r_h(y)) = g^k h^{-k} \Pi_k(x,y); \]

(iii) uniformly on \(x \in X \), there is an asymptotic expansion of the form
\[\Pi_k(x,x) \sim \left(\frac{k}{\pi} \right)^d \cdot \left[1 + \sum_{j \geq 1} k^{-j} a_j(m_x) \right], \]

where \(a_j : M \to \mathbb{R} \) is \(C^\infty \), and we have set \(m_x := \pi(x) \). Each \(a_j \) is describable in terms of the curvature tensor of \(M \) (for instance, as first remarked by \([8]\), we define \(\psi_2 : C^d \times C^d \to C \) by
\[\psi_2(v_1,v_2) := -i \omega_0(v_1,v_2) - \frac{1}{2} ||v_1 - v_2||^2. \]

In so-called Heisenberg local coordinates (henceforth, HLC’s) centered at \(x \in X \), we have
\[\Pi_k \left(x + \left(\frac{\theta_1}{\sqrt{k}}, \frac{\theta_2}{\sqrt{k}} \right), x + \left(\frac{\theta_1}{\sqrt{k}}, \frac{\theta_2}{\sqrt{k}} \right) \right) \sim \left(\frac{k}{\pi} \right)^d \cdot e^{i k (\theta_1 - \theta_2) + \psi_2(v_1,v_2)} \cdot \left[1 + \sum_{j \geq 1} k^{-j/2} R_j(m_x; v_1, v_2) \right]. \]

Here \(R_j(m_x; \cdot, \cdot) \) is a polynomial of degree \(\leq 3 j \). To appreciate the significance of (2), recall that in the expression \(x + (\theta, v) \) the coordinate \(\theta \) expresses the action of \(e^{i \theta} \in S^1 \), i.e. \(x + (\theta, v) = r_{e^{i \theta}}(x + (0, v)) \), while \(v \) represents an ‘horizontal’ displacement from \(x \) (see \([11]\) for a detailed description of HLC’s). Hence, \(v_1 - v_2 \) represents a displacement from \((\pi \times \pi)^{-1}(\Delta_M) \).

For fixed \(C > 0 \) and \(\epsilon \in (0, 1/6) \), the asymptotic expansion (2) holds uniformly for \(||v_j|| \leq C k^{\epsilon} \).

The general issue we are involved with is the following: how does the previous analysis carry over when the standard \(S^1 \)-action is replaced by a more general action of a connected compact Lie group \(G \) on \(X \), yielding a unitary representation on \(H(X) \)?

As a motivation for the following arguments, let us remark that the standard circle action \(r : S^1 \times X \to X \) descends to the trivial action on \(M \), and the latter may be viewed as a
Hamiltonian action with constant moment map equal to 1. Thus we may interpret \(r \) as the contact lift of the trivial action on \(M \) associated to the moment map \(\Phi_{S^1} \equiv 1 \).

The latter interpretation yields a much more general setting for the previous result. Namely, given any Hamiltonian action of a connected compact Lie group \(G \), with moment map \(\Phi_G : M \to \mathfrak{g}^\ast \), we have a built-in infinitesimal contact action of the Lie algebra \(\mathfrak{g} \) on \(X \). Explicitly, for any \(\xi \in \mathfrak{g} \) let \(\xi_M \in X(M) \) be the associated Hamiltonian vector field on \(M \), and let \(\xi_M \in X(X) \) be its horizontal lift to \(X \). Then

\[
\xi_X := \xi_M^\sharp - (\Phi_G, \xi) \partial_\theta
\]

is a contact vector field on \(X \); here \(\partial_\theta \) is the generator of the \(S^1 \)-action.

Let us assume, as is the case in many natural and interesting situations, that this infinitesimal action is the differential of a genuine contact action \(\tilde{\mu} \) of \(G \) on \(X \). For instance, when \(G = S^1 \), \(\mu \) is trivial and \(\Phi_G = 1 \), as we have remarked we recover the (reverse) standard action on \(X \).

Let us also assume that \(\mu \) is holomorphic. Then \(\tilde{\mu} \) preserves the contact and CR structures of \(X \), and induces a unitary representation on \(H(X) \).

Hence, by the Theorem of Peter and Weyl, \(H(X) \) splits equivariantly and unitarily over the irreducible representations of \(G \), which are all finite dimensional:

\[
H(X) = \bigoplus_{\mathcal{D} \in G} H(X)_{\mathcal{D}}.
\]

(3)

If \(0 \not\in \Phi_G(M) \), then every isotypical component \(H(X)_{\mathcal{D}} \) is finite-dimensional. Therefore, the corresponding projection operator \(\Pi_{\mathcal{D}} : L^2(X) \to H(X)_{\mathcal{D}} \) is smoothing, i.e., its distributional integral kernel is in fact a \(C^\infty \) function \(\Pi_{\mathcal{D}} \in C^\infty(X \times X) \). We are interested in the pointwise asymptotics of \(\Pi_{\mathcal{D}} \) as \(\mathcal{D} \to \infty \) along a ‘ray’ in weight space, in a sense to be specified.

When \(G \) is a torus, this problem has been investigated in [9], [10], [5]. The cases where \(G = U(2) \) and \(G = SU(2) \) have been studied in [6] and [7], respectively. We shall give an overview of some of the results in [6].

As is well-known, the irreducible representations of \(U(2) \) are indexed by the pairs \(\mathcal{D} = (\nu_1, \nu_2) \in \mathbb{Z}^2 \) with \(\nu_1 > \nu_2 \), the irreducible representation associated to \(\mathcal{D} \) being \(V_{\mathcal{D}} := \text{Sym}^{\nu_1-\nu_2+1}(\mathbb{C}^2) \). We shall fix a weight \(\mathcal{D} \), and consider the asymptotics of \(\Pi_{k, \mathcal{D}}(x,y) \) when \(k \to +\infty \).

Let us set from now on \(G = U(2) \) and \(\mathfrak{g} = \mathfrak{su}(2) \), and let \(\mathcal{O} \subseteq \mathfrak{g} \) be the coadjoint orbit through \(\mathcal{D} \) (with some abuse of language, we view \(\mathcal{D} \) as an element of \(\mathfrak{g} \), and identify \(g \equiv g^\vee \) equivariantly)). Furthermore, let \(T \leq G \) be the standard maximal torus, with Lie algebra \(\mathfrak{t} \subseteq \mathfrak{g} \).

The restricted action of \(T \) is also Hamiltonian, and its moment map \(\Phi_T : M \to \mathfrak{t} \) is the composition of \(\Phi_G \) with the orthogonal projection \(\mathfrak{g} \to \mathfrak{t} \).

We shall make the following assumptions:

(i) \(0 \not\in \Phi_T(M) \), and therefore also \(0 \not\in \Phi_G(M) \);

(ii) \(\Phi_G \) is transverse to the ray \(\mathbb{R}_+ \cdot \mathcal{D} \), or equivalently to the cone over the coadjoint orbit, \(\mathbb{R}_+ \mathcal{O} \);

(iii) \(\Phi_T \) is transverse to \(\mathbb{R}_+ \mathcal{D} \).

For example, consider the unitary representation of \(G \) on \(\mathbb{C}^4 \cong \mathbb{C}^2 \times \mathbb{C}^2 \) given by \(A \cdot (Z,W) := (AZ,AW) \). By restriction we obtain a contact action \(\tilde{\mu} \) on \(S^7 \), and by passing to projective space an Hamiltonian action \(\mu \) on \(\mathbb{P}^3 \). The positive line bundle \(A \) is of course the hyperplane line bundle, \(X = S^7 \) and \(\pi : S^7 \to \mathbb{P}^3 \) is the Hopf map. All the previous assumptions are then satisfied for any pair \(\mathcal{D} \) with \(\nu_1 > \nu_2 \). An explicit plethysm computation yields that \(\dim H_{\mathcal{D}}(X) = O(k^2) \) (see [6] for a detailed discussion of explicit examples).

To begin with, \(\Pi_{k, \mathcal{D}}(x,x) \) does not have a uniform asymptotic expansion in this case, but rather it concentrates over a certain hypersurface in \(M \). More precisely, let us set
\(M_G := \pi^{-1}(R_+ \mathcal{O})\). Under the previous assumptions, \(M_G \subseteq M\) is a connected real hypersurface in \(M\), and \(M \setminus M_G\) has two connected components, that we shall euphemistically call the ‘inside’, \(A\), and the ‘outside’, \(B\). Explicitly, if \(m \in M\) the image in \(t \cong R^2\) of the orbit \(G \cdot m\) is a closed segment \(J_m\) on the line \(x + y = \text{trace}(\Phi_G(m))\). Then \(m \in B\) if and only if \(R_+ \mathcal{V}\) does not intersect \(J_m\), \(m \in M_G\) if and only if \(R_+ \mathcal{V}\) intersects \(J_m\) in an endpoint, and \(m \in A\) if and only if \(R_+ \mathcal{V}\) intersects \(J_m\) in an interior point.

Then \(\Pi_k \mathcal{V}(x, y) = O(k^{-\infty})\), unless \((m_x, m_y) \in M_G \times M_G^c\), and \(x \in G \cdot y\). Rapid decrease holds uniformly for pairs \((x, y)\) converging from the ‘outside’ \(B\) at a sufficiently slow pace to the locus where the previous conditions are satisfied.

We are thus led to consider the asymptotics of \(\Pi_k \mathcal{V}(x, x)\) when \(m_x \in M_G^c\). Under the previous assumptions, the action of \(G\) on the inverse image \(X_G^c := \pi^{-1}(M_G^c) \subseteq X\) is locally free. We shall make the stronger simplifying assumption that \(G\) acts freely on \(X_G^c\) (this is the case in the examples discussed in [6]). Then \(\Pi_k \mathcal{V}(x, x)\) admits an asymptotic expansion for \(k \to +\infty\) of the following form:

\[
\Pi_k \mathcal{V}(x, x) \sim \frac{C}{\|\Phi_G(m)\|^{d+1/2}} \cdot D_\mathcal{V}(m) \cdot \left(\frac{\|\mathcal{V}\| \cdot k}{\pi} \right)^{d-1/2} \cdot \left[1 + \sum_{j \geq 1} k^{-j/4} a_j(m_x) \right],
\]

for appropriate \(C^\infty\) functions \(a_j\). Here \(C\) is a universal constant, and \(D_\mathcal{V}(m)\) is a distortion function in the normal direction to \(M_G^c\) (we refer to [6] for precise definitions).

We can give a rescaled version of the previous result, at least for ‘horizontal displacements’ along direction perpendicular to the orbits of the complexified action. Namely, if \(x \in X_G^c\) and \(v_j \in T_{m_x} M, j = 1, 2\), satisfy \(h_{m_x}(v_j, \xi_M(m)) = 0\) for every \(\xi \in g\), then the previous pointwise asymptotics may be refined as follows:

\[
\Pi_k \mathcal{V} \left(x + \frac{v_1}{\sqrt{k}} x + \frac{v_2}{\sqrt{k}} \right) \sim \frac{C \cdot e^{\psi_2(v_1, v_2)/k} \mathcal{V}(m_x)}{\|\Phi_G(m)\|^{d+1/2}} \cdot D_\mathcal{V}(m) \cdot \left(\frac{\|\mathcal{V}\| \cdot k}{\pi} \right)^{d-1/2} \cdot \left[1 + \sum_{j \geq 1} k^{-j/4} a_j(\mathcal{V}, m_x; v_1, v_2) \right],
\]

where \(a_j(\mathcal{V}, m_x; \cdot, \cdot)\) is a polynomial of degree \(\leq \lfloor 3j/2 \rfloor\); the asymptotic expansion holds uniformly for \(\|v_j\| \leq C k^\epsilon\), for any \(C > 0\) and \(\epsilon \in (0, 1/6)\).

For normal displacements, there is an asymptotic expansion whose terms are expressed by a less terse integral formula; however, it can be used to obtain an estimate on the dimension of the isotypical component:

\[
\dim H_k \mathcal{V}(X) \geq C \cdot \left(\frac{k \|\mathcal{V}\|}{\pi} \right)^{d-1} \cdot \int_{M_G^c} \frac{D_\mathcal{V}(m)}{\|\Phi_G(m)\|^d} \, dV_{M_G^c}(m) + O \left(k^{d-3/4} \right).
\]

Although our presentation is limited to the Kähler setting for the sake of simplicity, the previous results may be naturally extended to the more general almost complex framework of [2] and [11].
References

[4] Catlin D 1997 The Bergman kernel and a theorem of Tian Analysis and geometry in several complex variables (Boston: Birkhäuser) 1-23