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Abstract. We test the usage of a Toolkit for Multivariate Data Analysis (TMVA) in b tagging.
Tagging b jets associated with heavy neutral MSSM Higgs bosons at the LHC can be used to
extract the Higgs bosons from the Drell-Yan background, for which the associated jets are
mainly light quark and gluon jets. Achievable b tagging efficiency is studied with more than
ten MVA classifiers at 1% mistagging rate. Most classifiers were found to perform better than
the simple track counting algorithm.

1. Introduction

At the LHC, the dominant Higgs boson production mechanism in the Minimal Supersymmetric
Standard Model (MSSM) at large values of tanβ is the heavy neutral Higgs boson production in
association with two b quarks. These associated b jets can be used to extract the Higgs events
from the Drell-Yan Z/γ∗ background [1], for which the associated jets are mostly light quark
and gluon jets.

Due to the relatively long lifetime of the B-hadrons, a jet can be identified as a b jet using
lifetime based tagging algorithms [2, 3], which rely on displaced secondary vertices and the track
impact parameter, ip. The impact parameter is the closest approach of the track trajectory to
the primary vertex. In a b jet tracks originate typically from a displaced secondary vertex,
as shown in Figs. 1 and 2, while the tracks in light quark (uds) and gluon jets originate from
the primary vertex. One of the most simple b-tagging algorithms is counting tracks with high
enough impact parameter significance within the jet cone. The impact parameter significance is
defined as the impact parameter value divided by its estimated error.

In this study we test the usage of the Toolkit for Multivariate Data Analysis (TMVA)
software in the b tagging problem. The b tagging efficiency is estimated and optimized for
1% mistagging rate. The background discriminating power is estimated for various methods
available in TMVA, such as rectangular cut optimization, projective and multi-dimensional
likelihood estimators, linear discriminant analysis with Fisher discriminants, artificial neural
networks and boosted/bagged decision trees. The effect of event preselection and variable
transformations applied on data is also investigated. The efficiency of the simple track counting
algorithm [1] using three tracks with best impact parameter significance is given as comparison.
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Figure 1. Geant4 based simulation of a
SUSY event in the CMS detector containing
missing transverse energy, jets and several
leptons in the barrel detector. (Picture:
IguanaCMS.)

Figure 2. A displaced secondary vertex
in a bb̄H event with H → ττ in the
CMS detector. The second b jet is not
reconstructed due to a low jet energy
and track multiplicity.

2. Key features of TMVA

The Toolkit for Multivariate Analysis for ROOT (TMVA) [4, 5, 6] is a machine learning
environment for sophisticated multivariate classifiers. It enables the use of various multivariate
classifiers and their evaluation in a ROOT environment. The key features are:

• individual pre-processing of the data for each classifier as a linear transformation into a
non-correlated variable space or projection upon their principal components

• providing the same training and test data for selected classifiers within the same execution
job allowing an easy comparison between classifiers

• for standalone use of the trained classifiers, code for lightweight C++ response classes
independent of ROOT and TMVA is generated

• visualization scripts with a graphical user interface providing e.g. signal efficiency vs.
background rejection curves (ROC curves).

General characteristics of the classifiers are presented in Table 1. Their details are described
in Refs. [5, 6]. As an example of the visualisation capabilities of TMVA, Fig. 3 shows examples
of a decision tree of the BDT classifier and convergence of the neural network classifier.

3. Data description

3.1. Event generation and simulation

In this study we use b jets from top quark decays as signal. With real data the b tagging
algorithms and efficiency will also be studied with tt̄ events, which are copiously produced and
easily identifiable. The signal and background jets are generated with TopREX [8] (tt̄ events)
and with PYTHIA [9] (Z/γ∗ events), and selected using the available generator level Monte-Carlo
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Table 1. Main characteristics of different classifiers [7].

Method Pros Cons

Cuts Easy to understand Possibly inefficient
Likelihood methods Fast to train and evaluate Non-linear correlations treated badly
HMatrix, Fisher Very fast and transparent fail if PDFs have same mean,

and if non-linear correlations
PDERS, kNN Handles well complex class boundaries Impractical with more than 10 variables
ANN Very good with non-linear correlations Black box, needs tuning
BDT Very good out-of-the-box performance Needs tuning to avoid overtraining
RuleFit Like BDT but simpler, fast evaluation Often needs some tuning
SVM Good with non-linear problems, Not transparent

insensitive to overtraining
FDA Very good classification if boundary is known Classification boundary function needed
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Figure 3. Example of a decision tree for the
BDT classifier. Type of the node, number of
events, purity and the cut are displayed for
each node.
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Figure 4. Convergence of the neural net
estimator as a function of iteration cycles
(epochs).

truth. The signal consists of 162k b jets from tt̄ events and 588k light quark and gluon jets
from Z/γ∗ events. The event reconstruction is based on official CMS digitized datasets [1] with
pile-up included. The pile-up consists of on the average 3.4 minimum bias events superimposed
per event crossing for luminosity 2× 1033cm−2s−1. The detector simulation has been done with
full GEANT4 [10] simulation. The CMS detector is simulated with complete ideal detector, no
staging and no misalignment of the detector elements is assumed. The jets, tracks and vertices
are reconstructed using standard methods available in the CMS reconstruction software. A more
detailed description of the event simulation can be found in Ref. [11].

3.2. Test scenarios and variables

We divide our analysis into two test scenarios. In the first scenario, we approach the b tagging
problem by feeding the different MVA classifiers the same set of variables, which are used in the
simple track counting algorithm. Using this fixed set of variables and the same set of events for
training and testing the classifiers, we compare various classifiers with each other as well as with
results from previous studies with neural networks [12, 13, 14]. The input variables used in this
scenario are:

• transverse impact parameter significance, σip, of the track with highest σip

• σip of the track with the second best σip
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Figure 5. Definition of impact parameter ip and
distribution for ip3.

Figure 6. Transverse impact param-
eter significance for highest σip,3.

• σip of the track with the third best σip.

Example of ip and σip distributions are shown for the signal and background jets in Figs. 5
and 6. Decorrelation and principal component analysis (PCA) were tested as input variable
preprocessing options.

In the second scenario, a larger set of input variables is used, from which one can freely
choose the optimal combination of variables in order to maximize the separation of the signal
and background events at the operating point. These variables include transverse momenta pT ,
transverse impact parameter ip and the σip for the three tracks with highest σip, the number of
tracks ntracks with pT > 0.5 GeV in a cone of ∆R = 0.7 around the jet axis, the jet ET , the
number of secondary vertices nvtx and the best vertex significance σvtx. Preprocessing of the
variables (e.g. logarithm) and combinations of variables were studied and used in addition to
decorrelation and PCA in order to optimize the performance of each classifier.

4. Computing environment

The computations have been performed in Helsinki using a 64-bit 1.8/2.2 GHz AMD Opteron
M-grid cluster called ametisti, which has 260 CPUs in 130 computational nodes with 2/4 GB
RAM. Ametisti has a dedicated Gb/s network for communication and another dedicated Gb/s
network for NFS-traffic to enhance the performance of the shared NFS disk system. In addition
to this there is also a fast Ethernet network used for remote management.

NPACI Rocks Cluster Distribution is a cluster management software for scientific computation
based on Red Hat Linux. It supports cluster installation, configuration, monitoring and
maintenance [15]. We use Rocks v. 4.1 on ametisti and the Sun Grid Engine (SGE) batch
queue system, which supports advanced features like back filling, fair share usage and array
jobs. Root version 5.14/00d and TMVA 3.8.5 has been used in this work.
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5. Results

The b tagging efficiency for each tested classifier is shown in Table 2 for the first scenario with
transverse impact parameter significances of the three best tracks as input. 10k events of both
signal and backround data were used for training the classifiers, while the remaining 152k signal
events and 578k background events were used for testing.

No input variable preprocessing (other than decorrelation for BDT) was used as they did
not improve the results, probably because the key quantities are exponential like and far from
Gaussian.

The signal separation power of H-Matrix and ANN classifiers is shown in Figs. 7 and 9. The
corresponding efficiency and purity graphs are shown in Figs. 8 and 10, respectively. The errors
of Table 2 were estimated by running the program for each classifier with different random
number generator seed values SplitSeed, which affects the event sampling. The run was repeated
20 times, out of which one run did not succeed. The mean values of the signal efficiencies of 19
successful runs are taken as the reported efficiencies with the standard deviation representing the
errors. A 5% (systematic) uncertainty of the efficiency of the simple track counting algorithm
was taken according to Ref.[1].

Figure 7. The signal separating power of
the H-Matrix classifier for test data.
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Figure 8. H-Matrix classifier efficiencies
for different cut values.

Figure 9. The signal separating power of
the TMlpANN classifier for test data.
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Table 2. Signal efficiencies of the studied classifiers at 1 and 10% mistagging rates using track
impact parameter significances as input. Result for the simple Track counting algorithm is shown
for comparison. CPU times measured with the time command for training and evaluation are
also given. Errors are calculated as explained in the text, except for RuleFit, for which the value
computed by TMVA is given.

train train
1% efficiency 10% efficiency CPU
bkg eff. at 1% bkg eff. at 10 % time [s]

Cuts GA 26.9±0.6 27.2±2.0 74.7±0.4 74.7±0.6 484
PDEKDE 22.1±1.1 26.4±1.7 70.0±0.3 70.2±0.3 123
PDERS 25.0±0.7 52.2±0.8 73.9±0.1 76.8±0.4 14848
HMatrix 28.2±0.4 28.5±2.1 63.8±0.9 63.8±1.2 32
Fisher 12.5±0.4 12.7±0.9 62.1±0.7 62.2±1.0 9
FDA GAMT 20.6±5.4 20.6±4.8 72.5±1.4 72.6±1.4 125
TMlpANN 26.6±0.3 27.7±3.2 74.9±0.1 75.0±0.4 158
BDT 28.3±1.3 36.9±1.4 70.2±1.2 72.3±1.2 241
RuleFitJF 31.8±0.4 26.3 74.9±0.4 75.2 72
SVM 27.1±0.2 27.5±1.9 71.8±0.8 71.9±1.0 3542

Track counting
b-tagging 26.6±1.3

The ROC curves for the first scenario is shown in Figs. 11 and 12. The latter shows in more
detail the area close to the 1% mistagging rate. Since the ROC curves are almost horizontal in
that area, a small variation in the background efficiency may result in a large variation in the
signal efficiency.

Figure 11. ROC curves for the studied
classifiers.

Figure 12. ROC curves near the 1%
background efficiency region. A horizontal
line is drawn at the 1% background
rejection rate.

The results for the second scenario are shown in Table 3. In this scenario, 10-15k of signal
and background events were used for training and the remaining 730k events for testing. For the
rectangular cuts method, however, only 150k signal and background events were used, since its
implementation was not stable with larger test samples. The input variables differ in this scenario
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for each classifier, as the set of input variables was optimized separately for each classifier. This
optimization shows clear improvement in the b tagging efficiency compared to the first scenario.
For most classifiers, improved separation power was obtained by taking the logarithm of selected
input variables, possibly since their distribution was more more exponential like than Gaussian.
The error estimate is calculated as in the first scenario, but now with 10 runs only.

In both scenarios, most classifiers did not experience overtraining. Only PDERS and BDT
were affected, but were still capable of producing good results. The overtraining was partly
reduced by adding more variables and by changing the parameters of the classifiers. Nevertheless,
overtraining is a feature inherent in these two classifiers and therefore even increasing the training
sample size cannot remove it completely.

Table 3. Signal efficiencies of the studied classifiers at 1 and 10% mistagging rates when the
combination of variables and parameters of each classifier was optimized for the 1% efficiency.
The optimal combination of variables is also shown.

training training
1% eff. 10% eff. variables
bkg eff. at 1% bkg eff. at 10%

Cuts GA 48.7±0.8 48.5±1.1 74.3±0.3 74.2±0.5 σip,2, σip,3, σvtx

PDEKDE 41.2±0.8 42.5±1.6 75.5±0.3 75.8±0.4 log(σip,k), k = 1, 2, 3, nvtx, σvtx

PDERS 40.1±1.2 62.7±0.4 76.5±0.3 79.9±0.2 log(σip,k), nvtx, σvtx

kNN 49.1±0.5 49.0±1.9 79.7±0.1 79.6±0.3 log(σip,k),log(σvtx), ET

HMatrix 32.4±0.7 32.3±1.9 73.5±0.2 73.4±0.3 log(σip,3),log(ip3),nvtx,ip1,ntracks,pT,3

Fisher 41.1±0.4 41.5±1.7 73.5±0.1 73.4±0.2 log(σip,3),log(ip3),nvtx,ip1,ip2

FDA GAMT 36.8±0.7 36.8±1.8 77.3±0.1 74.0±0.4 log(σip,2),log(σip,3),log(σvtx), ntracks

TMlpANN 48.0±0.5 53.0 77.5±0.5 80.5 log(σip,k),log(ipk),log(pT,k),log(σvtx),
ntrack, nvtx

BDT 49.2±0.5 58.4±1.4 79.1±0.1 82.0±0.4 log(σip,k),log(ipk),εk = ipk/σip,k, log(pT,k),
log(σvtx), ntracks, nvtx,Σkσ2

ip,k, Σkip2

k,
Σkε2k, Σkp2

T,k

RuleFitJF 51.8±0.2 53.8±1.2 79.0±0.1 79.3±0.3 σip,k, ipk, k = 1, 2, 3, σvtx

SVM 35.0±0.7 35.8±1.7 76.7±0.2 76.8±0.5 σip,k, ipk, pT,k, σvtx ,nvtx , ntrack

The following observations were made for individual classifiers:

• The best results for the rectangular cut optimization using genetic algorithm (Cuts GA)
method were achieved with a small number variables with best signal separating power.
The variables used were the impact parameter significance of the second and third track,
and the secondary vertex significance. The default set of optimization parameters were
used. The rectangular cut suffered from problems with very large number of events in the
test tree, hence only 150k signal and 150k background events were used for testing.

• As to the likelihood classifiers the decorrelation preprocessing did not help, probably because
the impact parameter distributions are exponential and far from Gaussian. The KDE
smoothing was slightly better option than the spline smoothing. The option with range
search (PDERS) worked well, but took about three orders of magnitude more CPU time
than the PDE classifiers with smoothing.

• The kNN classifier is fairly fast. The user also does not have to give complex input. These
features make kNN easy to use. The classifier itself, however, could not handle certain type
of input data. It had problems with impact parameter significances as input variables. The
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runs with these variables stopped with error message “kNN result list is empty or has wrong
size” which prevented us from getting the results of Table 2 for kNN.

• Extremely small CPU requirements and no need for guiding made the H-Matrix and Fisher
methods best candidates for the very first studies with the data. Efficiency of the H-Matrix
method was of the average level of the classifiers studied. The Fisher method performed
rather poorly in the first study in which track impact parameter significances were used.

• FDA classifier is very sensitive to the user defined discriminating function which is not
always easy to find for non-linear problems. In the optimized case a third degree polynomial
was used as the formula and it seems to produce results which do not change much as we
change the random seed. FDA with genetic algorithms and Minuit (FDA GAMT) seems
to be stable.

• From three neural networks implementations supported by TMVA we found TMlpANN
giving systematically best results. Our initial findings supported previous results [11, 12, 13],
so we decided to focus on an extended set of input variables, thus challenging core
functionalities of TMVA. When we added previously unused variables pT , σvtx, and nvtx,
which we knew to be relatively weak signal-background -separators, a small, but systematic,
improvement was found in signal efficiencies.

• The BDT classifier was found to be robust enough to handle a large number of input
variables. Although it is prone for overtraining, it was found to be one of the best classifiers
in performance. The trees were allowed to grow on average to 10 nodes with the σip as
input and to 250 nodes in the full optimization case. The number of trees was chosen as
400 in all results.

• Both of the RuleFit implementations gave good results in the first scenario, but both suffered
from instabilities, preventing the use of the same error estimation as for the other classifiers.
RuleFitJF seems to be the more robust of the two giving slightly better results in the first
scenario. In the second scenario RuleFitJF performed significantly better.

• The SVM method was found to be CPU intensive, especially with large number of training
events. The efficiency was adequate compared to other classifiers. The best performance
for the standard scenario was found with Gaussian kernel with σ = 0.5 and C = 2.9. For
the free scenario (Table 3) the parameters were σ = 2.0 and C = 3.0.

6. Conclusions

We have succesfully tested ROOT based multivariate analysis package TMVA with MC data
consisting of signal events with Higgs topology and corresponding background events.

The TMVA toolkit provides several classification methods to extract signal from background
with fairly little effort. Easy application makes it possible to find the suitable method and
optimal set of parameters and their transformations with a finite amount of work. Furthermore,
the automatic C++ code generation makes straightforward to embed the trained classifier in
external code.

Our results indicate improved classification power in comparison with earlier work [1, 12]
and the reference algorithm. Some classifiers suffer from instabilities, yet TMVA shows good
potential to be used for the LHC data analysis, and it even sets a new standard for easy
application of MVA classifiers in HEP.
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