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Abstract. This paper uses Word2vec to study Tibetan word vector. Word2vec is optimized by
two methods: Hierarchical Softmax and Negative Sampling in CBOW and Skip-gram models.
Through the training of neural network, the words in Tibetan sentences are converted into vector
form. Word2vec transforms the Tibetan text content processing into a simple vector space
operation, calculates the similarity in the vector space, and then obtains the semantic similarity
of the text, providing an accurate word vector for the training of the language model.

1. Introduction

Speech recognition is an important field of artificial intelligence research, and the quality of the language
model to a great extent determines the accuracy of speech recognition in the language model training,
which requires the vectorization of words in a Tibetan text corpus in advance compared to the traditional
one-hot word vector.Word2vec is a distributed representation in the form of a word vector, according
to the relationship of context to define the term vectors, each of those dimensions is real Numbers in a
row, and high correlation of the word has a closer distance. Compared with Word2vec, one-hot word
vector has many problems, such as dimension disaster, data sparse, the isolation of semantics and the
difficulty of fuzzy matching, etc., with stronger expressive force and more internal features of corpus
data.

Tibetan is a very important minority language in China. According to incomplete statistics, more
than 6.4 million people use Tibetan. This research can provide theoretical and data support for Tibetan
phonetic teaching, phonetic technology engineering application, and perfect the research of Tibetan
phonetic direction. At the same time, strengthening the study of Tibetan pronunciation can not only
effectively solve the problem of language barriers between Tibetan areas and other regions of China,
which is promoting inter-ethnic exchanges and mutual understanding among ethnic groups, but also
promote the Tibetan area's economy, science and technology.

2. Word2vec structural model

This section introduces the word vector in distributed representation form used by Word2vec, which
introduces the use and optimization of Word2vec. Finally, the specific flow and structure of Word2vec's
CBOW model and Skip-Gram model are introduced, as well as the performance comparison between
the two models.

2.1. The distributed representation word vector

Distributed representation putted forward by Hinton as early as in 1986, by training every word map
into a fixed length of ‘short’ vector (as opposed to one-hot vector ‘long’), and all these constitute a word
vector space, and each vector can be seen as a point in the space. The introduction of ‘distance' on the
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space, and then judged by the distance between the word and the word on the lexical and semantic
similarity. Distributed representations of words in a vector space help learning algorithms to achieve
better performance in a natural language processing task by grouping similar wordst™. Word2vec uses
this vector representation of the distributed representation. It is a low-dimensional real number vector
in the form: [0.832, - 0.169, -0.397, 0.339, -0.894...]. Word vectors are widely used, including computing
similarity (searching for similar words, information retrieval), which is the input of SVM/LSTM and
other models (Chinese word segmentation, nomenclature recognition), sentence representation
(affective analysis), document representation (document subject identification) and so on.

2.2. Introduction to Word2vec

Word2vec is a tool that Google has open sourced in 2013 to express words as real-value vectors. The
models are CBOW and Skip-Gram.Word2vec uses a one-layer neural network to map the word vector
in one-hot form to the word vector in distributed representation form. Through training, the Tibetan text
content processing is simplified to vector operation in k-dimensional vector space, and the similarity
degree in vector space can be used to express the similarity of text semantics. Therefore, the word vector
output is used to do a lot of NLP related work, such as the Tibetan language clustering studied in this
paper. Our technique is inspired by the recent work in learning vector representations of words using
neural networks?. The words processed by Word2vec can be used to add, subtract, multiply and divide
vectors so that the expression of words can be vectorized, and the similarity between them can be
calculated more easily.

Word2vec's training algorithm is a vector corresponding to a word. That is, there is only a single
interpretation (one-to-one mapping) of the semantic attribution of words. Word2vec's analysis of
semantics is not based on common sense, nor is it based on the grammatical rules of natural languages
to construct models, but on the basis of the rules of lexical statistics to make a statistical hash of lexical
units. Actually according to the result of clustering proceeds to directly obtain one kind of classification
rule. So Word2vec vector’s clusters proceed from the actual semantic orientation and the analysis of
inner value, which requires the expectation for further analysis and research on this field to arrive at
accurate conclusions.

2.3. Word2vec model structure

Word2vec is an intermediate product of the neural probabilistic model, which is a byproduct of the
neural network to learn a language model. Specifically, a language model refers to CBOW and Skip-
gram. And two language model specific learning process method of approximation of two will be used
to reduce the complexity of the Hierarchical Softmax and Negative Sampling.

2.3.1 Continuous word bag model CBOW. The CBOW maodel predicts the central words according to
the words around the central word y;, while the Skip-Gram model predicts the surrounding words
according to the central word x«. Below are the CBOW model structure diagram and Skip-Gram model
structure diagram respectively, as shown in Figure 1.
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The CBOW predicts the current word based on the context, and the Skip-Gram predicts surrounding
words given the current word®!. Contrary to CBOW, Skip-Gram model is based on the input at the center
of the word to predict around the word.

® Input layer: Enter the one-hot coding of the context word around the target word, where the

window size is C and the vocabulary size is V.
® Hidden layer: The vector sum averaging vector as the hidden layer, the size is 1 * N and
dimensions for N.

® Be one-hot coding input vector through a weight matrix W, the dimensions of W is V * N which

connected to the hidden layer.

® Output layer: Be one-hot code word y

Hidden layer by the weight of a, N * VV matrix W ', connected to the output layer. Finally, vector 1*v
is obtained. After the activation function softmax normalization, the v dimension probability distribution
is obtained. The word with the highest probability is the predicted intermediate word y.

In the Skip-Gram model, we are given a corpus of words w, and their contexts c, ¢ is 1 to m. We
consider the conditional probabilities is p(cjw) and given a corpus Text, and the goal is to set the
parameters 6 of p(c|w; 0), so as to maximize the corpus probability in formula (1):

arg max 11 { 11 p(c|w;6)} )

weText | ceC(w)
C(w) is the set of contexts of word w. Alternatively as shown in formula (2):
argmax [] p(clw;0) 2
(w,c)eD
D is the set of all word and context pairs we extract from the text!,

2.4. CBOW model process example
It is simple to assume that the present corpus is a document with only four words: { =3 a7 %= a3« }, the

target word is =, the window size is 2. According to the word =x, 7= and =~ aim to predict a central
word x=. And what we want to predict is that the word g, The Specific processes are shown in Figure 2.

Input Hidden Output

Figure 2. CBOW model

Example corpus = { 551 = R q%& }
Window size: 2
Target word: =
Context word: 59 1 SR 5 RN
* X1: W+=[1,0,0,0]

X2: W= =10,1,0,0]

Label is x3: W ==[0,0,1,0]

Xa : W=10,0,0,1]
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* Initialize:
1 2 30
w=|1l 2 1 2
-1 1 1 1
Ex: W= =1[0,1,0,0]
WXz = V>
0
1 2 30 L 2
1 21 2 0 =2
-1 1 1 1 1
0
V1+V2+V4_0
. 3
1 2 0 1
é 1|+2|+|2]||=|1.67
-1 1 1 0.33
* Initialize:
1 2 -1
-1 2 -1
W'=
1 2 2
0 2 O
W'é=U,
1 2 -1 4.01
1 2 -1 1.00 2.01 -
12 2 |27 s.00 -
033| | uoo
0 2 O 3.34 U4
»  Softmax(Uo)=y
4.01 0.23
2.01 0.03
soft max =
5.00 0.62
3.34 0.12

Use the above five steps to get the most likely target words. The probability of = is 0.62. We desire
probability generated to match the true probability x3[0,0,1,0]. And use gradient descent to update W

and W’.

3. Word?2vec realize

This part mainly introduces the implementation of wrord2vec, including the main work of data

preparation and the final results of the experiment.

3.1. data preparation

® |etters from the Tibetan WeChat Official Account crawl a large number of text.
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® Getting rid of complete gibberish, in both Chinese and English and digital work, which is getting
the exact Tibetan sentences.

® Segmentation of Tibetan text corpus separated by Spaces or TAB key to the corpus.

® Named after copy to Word2vec trunk, which runs on the server.

3.2. Word2vec main work
There are some main words in Word2vec:
® Segmentation, stem extraction, and morphological reduction. The difficulty is to break each
sentence down into an array of words.
® Construct the dictionary, the word frequency statistics. Going through all the text to find all the
appear words and count how often they appear.
® Construct a tree structure. Huffman tree is constructed according to occurrence probability, and
all categories should be in leaf nodes.
® The generated code in the binary code to reflect the positions of the nodes in the tree.
® [nitialize all the nodes in the middle of the vector and the vector of words in a leaf node. In the
leaf node, the word vector of each word is stored as the input of the neural network. The non-
leaf nodes store intermediate vectors, which together with the input determine the classification
results for the parameters used in the hidden layer in the neural network.
® Training and word vector in the middle. For a single word, which changes only the intermediate
vector of the node on its path at most, and the other nodes remain the same.

4. Experimental result

4.1. Semantic result
After entering Tibetan words =3, Which is 1499 places in the corpus text, and list a number of words

that are semantically relevant TR, because Word2vec calculates the cosine value, the range of distance

is between 0 and 1. The larger value means the higher correlation between the two words. So the more
words on top, the more closely related to «~. The result is shown in Figure 3 below.

Figure 3. Semantic result

4.2. Distance result and Cluster result

Figure 4 is the vectors.bin model file after training. It shows each word and its corresponding vector in
Tibetan corpus. The vector dimension is the size of the parameters set during the training. By sorting a
file for keyword clustering, the partial clustering results are captured as shown in Figure 5.

Figure 4. Distance result Figure5. Cluster result

5. Conclusions
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In this paper, we present two modifications to the original models in Word2vec that improve the word
embeddings obtained for syntactically motivated tasks®. Word2vec constructs a multi-layer neural
network, then obtains the corresponding input and output in Tibetan text corpus, and constantly modifies
the parameters of the neural network during the training process. Finally, the word vector is obtained.
The specific Word2vec uses two training models, CBOW and Skip-Gram, and combines hierarchy
softmax and Negative Sampling to optimize the parameters, which obtains the distributed word vector.
In short, Word2vec greatly simplifies the network structure, at the same time, because the simple
network structure brings low computational complexity, we can calculate the very accurate
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high-dimensional word vector on the larger dataset.
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