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Abstract：As the integrated navigation system is a nonlinear system, in the case of 
non-gaussian noise, the traditional nonlinear gaussian filtering algorithm has a serious problem 
of decreasing filtering precision. In this paper, a new robust high-degree Cubature Kalman 
filtering algorithm is proposed, which takes into account the nonlinearity of the system and 
non-gaussian noise. The algorithm improves the measurement updating process by using the 
Maximum correntropy criterion(MCC), and converts the traditional measurement updating 
problem into the linear regressione quation solving problem. Combines the advantages of 
Maximum correntropy criterion and Cubature Kalman filter to deal with non-Gaussian and 
nonlinear systems. The proposed algorithm is applied to the SINS/GPS integrated navigation 
system, the simulation results show that the proposed algorithm's filtering performance is 
greatly affected by the kernel width. Under the condition of gaussian mixture noise, the new 
robust high-degree Cubature Kalman filter based on Maximum correntropy 
criterion(MCC-HCKF) is more robust and has higher filtering precision than the traditional 
high-degree Cubature Kalman filter(HCKF).

1.Introduction 
Strapdown inertial navigation system (SINS) and global positioning system (GPS) are combined to 
form SINS/GPS integrated navigation system that combines the advantages of both navigation. In the 
positioning of the integrated navigation system, the accuracy of the filtering algorithm has a great 
impact on the positioning accuracy [1-2]. Kalman filtering (KF) is the optimal estimation algorithm 
for solving linear system problems, but its accuracy is greatly affected for nonlinear systems and 
systems with noise non-Gaussian conditions. However, the mathematical model of actual physical 
system is usually non-linear, that is, the system equation or measurement equation is non-linear. At this 
time, the nonlinear filtering algorithm becomes the key to improve the accuracy of integrated 
navigation system. 

 Extended Kalman filter (EKF) expands the Taylor series of the original system and measurement 
equation and retains linear terms. Truncation error is actually introduced, the filtering precision can 
only reach the first order, and the calculation amount of Jacobian matrix is also large. Particle filter 
(PF) is a kind of filtering algorithm which does not need to make an approximation to the state 
equation, nor to assume the statistical characteristics of noise. However, due to the features of particle 
degradation and high computational complexity, the filtering accuracy is not high, which is not 
convenient for practical application. The more commonly used nonlinear filtering method is the 
gaussian approximate summation filtering method represented by untracked Kalman filtering (UKF) 
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and Cubature Kalman filtering (CKF). Different from the linearization idea of EKF, UKF and CKF 
approximate the density function of state vectors by using a series of selected sample points to 
approximate the mean and covariance of the gaussian distribution of random variables. The filtering 
accuracy is high and there is no need to calculate the Jacobian matrix[3-4]. Feng Sun and Lijun Tang 
studied the filtering accuracy and numerical stability of UKF and CKF, it is pointed out that CKF 
should be adopted for three-dimensional and above systems, and the numerical stability of CKF 
algorithm is higher than that of UKF[4]. Jia bin et al. studied the HCKF algorithm of the high cubature 
rule, and the filtering precision can reach the fifth order[5]. 

In actual physical systems, measurement information is often interfered, and measurement noise 
does not satisfy the hypothesis of gaussian noise [6-7]. Therefore, the accuracy of the filtering 
algorithm based on the gaussian distribution hypothesis of noise will decline or even diverge in 
practice. Huber proposed M estimation to solve the problem of symmetric interference near gaussian 
distribution [8-9]. Cheng Chen, Hongxin Jin et al. proposed the robust filtering algorithm based on 
Huber method and made successful application in target tracking and UAV navigation [10-14]. 
Maximum Correntropy criterion(MCC) is a robust algorithm proposed in recent years [15]. Badong 
Chen proposed a robust KF algorithm based on MCC by combining MCC with KF filtering, and 
verified its feasibility. In this paper, the MCC method is combined with the HCKF algorithm and the 
integrated navigation system is used for simulation verification. The simulation results show that the 
algorithm is superior to the traditional non-linear filtering algorithm when the measurement noise is 
gaussian mixture distribution.  

2.The Model of SINS/GPS Integrated Navigation System  

2.1 Integrated navigation system equation of state 
The inertial coordinate system is i , the earth coordinate system is e , and the carrier coordinate 
system is b . The local geographic coordinate system, that is, the “east, north, and sky” coordinate 
system is selected as the navigation coordinate system, which is n, and the calculated navigation 
coordinate system obtained by SINS is p . Because SINS is affected by various error sources, there is 
a misalignment angle T[ ]= x y zφ φ     φ  φ    between the n and the p  calculated by the navigation 
computer. It represents a set of Euler angles from n to p , and the order of rotation is zφ , xφ , yφ . So 
the coordinate transformation matrix from n to p  can be described as 

 

cos 0 sin 1 0 0 cos sin 0
0 1 0 0 cos sin sin cos 0

sin 0 cos 0 sin cos 0 0 1

cos cos sin sin sin cos sin sin sin cos sin cos
    cos sin cos co

 −    
     = ⋅ ⋅ −     
     −    

+ − + −
=

y y z z
p

n x x z z

y y x x

y z y x z y z y x z y x

x z x

C
φ φ φ φ

φ φ φ φ
φ φ φ φ

φ φ φ φ φ φ φ φ φ φ φ φ
φ φ φ s sin

sin cos cos sin sin sin sin cos sin cos cos cos

 
 
 
 − − − 

z x

y z y x z y z y x z y x

φ φ
φ φ φ φ φ φ φ φ φ φ φ φ

 (1) 

The GPS/SINS pine integrated navigation system was used as the filtering model, and the error 
equation of attitude, speed, position, gyro zero bias and accelerometer zero bias of the SINS was used 
as the state equation of the nonlinear filter model, and the speed and position error between the SINS 
and GPS were used as the measurement information. Nonlinear error equation of attitude, speed and 
position of SINS [17] is described as 
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  (2) 

The coefficient matrix 1−Cφ  in equation (2) is described as 

1

0
1

0

x y y x

x y x x y
x

y y

cos cos sin cos
sin sin cos sin cos

cos
sin cos

φ

φ φ φ φ
φ φ φ φ φ

φ
φ φ

−

 
 = − 
 − 

C   (3) 

In equation (2), p
bC  is the coordinate transformation matrix from the system b  to the 

computational navigation coordinate system p . n
inω  is the projection of the angular velocity of the 

navigation coordinate system relative to the inertial coordinate system on the navigation coordinate 
system, and n

inδω  is the calculation error of the navigation coordinate system. nδv  is the calculation 
error of velocity, p

enω  is the projection of the angular velocity of the navigation coordinate system 
relative to the earth coordinate system on the calculation navigation coordinate system. n

enδω  is the 
calculation error of p

enω , p
ieω  is the projection of the earth's rotation velocity in the calculation 

navigation coordinate system, n
ieδω  is the calculation error of p

ieω . Lδ 、δλ 、 hδ  are respectively 
latitude error, longitude error and height error. b

ibδω  is the measurement error of the gyroscope, 

consists of gyro constant drift T
 =  b bx by bz      ε ε εε  and gyro random drift T

 =  g gx gy gzω ω  ω  ω , gω  is 

zero mean gaussian white noise. bf  is the actual measured value of the accelerometer, bδf is the 
calculation error of the accelerometer, consists of accelerometer constant value zero offset 

T
 =  b bx by bz∇ ∇ ∇ ∇  and accelerometer random drift T

ax ay az =        aω ω ω ω , aω  is zero mean 
gaussian white noise. 

The 15-dimensional state vector is described as [ z x yx y             v  vφ φ φ δ δ=X  
T

b b b b b b ]x y z x y z                       v δ L   δ h  δ  ε ε ε ∇ ∇λ ∇  δ z  
The state equation of the SINS/GPS integrated navigation system can be derived by equation (2) 

( )= +X f X w  (4) 
( )f   is a non-linear function, w  is system noise. 

2.2 Integrated Navigation System Measuremen-t Equation 
The difference of velocity and position information output of SINS and GPS is used as the 
measurement value of filter  
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−
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the measurement equation of the integrated navigation system is 
= +Z HX v  (6) 

[ ]66 3 66 6× ××=       H I0 0  is Measurement matrix, v  is Measurement noise. 

3.Robust High-degree CKF algorithm based on MCC 

3.1 Maximum correlation entropy 
Suppose two random variables ,x y ∈R , the joint probability density function is ( ),xyp x y , and the 
correlation entropy is defined as 

( ) ( ) ( ) ( ), , , yxyV x, y E x y x y p x dxyκ κ= = ⋅      (7) 
in the equation, E  represents expectation, ( ),x yκ  denotes the gaussian kernel function, the specific 
expression is 

( ) ( )
2

2, exp
2
ex y eσκ
σ

 
= = − 

 
G  (8) 

Where, e x y= − ,σ  denotes the scale of kernel and 0σ > . In practical application, only limited 
data can be obtained and the joint probability density is unknown, and the approximate solution of 

( )V x, y  can be obtained by using a series of sampling points [16]. At this point, equation (8) can be 
written as 

( ) ( )( )
1

1ˆ ,
N

i
V X Y e i

N σ
=

= G  (9) 

Figure 1 is a schematic diagram of correlation entropy when 1σ = , it can be found that correlation 
entropy measures the generalized similarity degree between two random variable, and the contribution 
of error e  will attenuate in exponential form with the change of kernel width σ , when 0e = , 

( ), 1x yκ =  takes the maximum value. The cost function based on MCC criterion is defined as 

( ) ( )( )
1

max
N

MCC
i

J e e iσ
=

= G  (10) 

 

 

Figure 1. Diagram of Correlation entropy ( ),x yκ  

3.2 High-degree Cubature Kalman filtering 
1) Initialization of filter 
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
  = − −   

X X

P X X X X
 (11) 

2) Time update 
a) The calculation of cubature points 

( )2
, 1| 1 0, 2− − =i k k i nX   

The singular value decomposition (SVD) with higher numerical stability is used instead of the 
traditional Cholesky decomposition. This decomposition method c-an better solve the problem of 
ill-condition of covariance matrix, so that the entire algorithm has higher numerical stability and 
filtering accuracy. Applying SVD decomposition to covariance matrix 1/ 1− −k kP , the decomposition 
result is shown as 

 T
1/ 1 1 1 1− − − − −=k k k k kP U S V  (12)  

, 1| 1 1| 1 1| 1ˆ− − − − − −= +i k k k k i i k ksX U ξ x  (13)  

Where, ( )1 2 3, , ,...,= rdiag s s s sS  denotes singular value of 1/ 1− −k kP , 1 2 3 ... 0≥ ≥ ≥ ≥ ≥rs s s s , ×∈ m mU R , 
×∈ n nV R . iξ  denotes integrate point set, when the fifth-order cubature principle is used, the number 

of cubature point is 22 1+n , specific expression of iξ  is written as [5,17] 

[ ]
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( ) ( ) ( )
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 (14) 

Where, n denotes the state dimension of system, ìe  denotes n  dimensional unit vector whose 
i th element  

1 ( ) : , , 1, 2, ,
2
1 ( ) : , , 1, 2, ,
2

j l k

j l k

l k l k n

l k l k n

+

−


= + < =



 = − < =

s e e

s e e




    (15) 

b) The calculation of cubature point transmitted by state equation  
( )*

, / 1 , 1| 1− − −=i k k i k kX f X           (16) 
c) The calculation of one step prediction of state 

( )
22

*
/ 1 / 1,

0
ˆ − −

=
=

n

k k i k k i
i

x Xω           (17) 

 Where, iω  denotes the weight of cubature points, which is shown as follows： 
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 (18) 

d) The calculation of predicted error covariance matrix  

( ) ( )
22 T* *

/ 1 , / 1 / 1 , / 1 / 1 1
0

ˆ ˆ
n

k k i i k k k k i k k k k k
i

ω− − − − − −
=

= − − +P X x X x Q (19) 

3) Measurement update 
e) The calculation of updated state cubature point 

, | 1 | 1 | 1ˆi k k k k i k k− − −= +X S ξ x        (20) 

Where, T
/ 1 | 1 | 1( )k k k k k k− − −=P S S . 

f) The calculation of cubature point transmitted by measurement equation 
, | 1 , | 1i k k k i k k− −=Z H X   (21) 

g) The calculation of measurement prediction 
22

| 1 , | 1
0

ˆ
n

k k i i k k
i

ω− −
=

=z Z  (22) 

h) The calculation of measurement error covariance matrix and predicted cross-correlation 
covariance matrix 

( )( )
22 T

, | 1 , | 1 | 1 , | 1 | 1
0

ˆ ˆ
n

zz k k i i k k k k i k k k k k
i

ω− − − − −
=

= − − +P Z z Z z R  (23) 

( )( )
22 T

, | 1 , | 1 / 1 , | 1 | 1
0

ˆ ˆ
n

xz k k i i k k k k i k k k k
i

ω− − − − −
=

= − −P X x Z z   (24) 

4) Filter update 
i) The calculation of filter gain matrix, filter state and covariance matrix 

1
1

−
−(= )k xz,k|k-1 zz ,k|kK P P  (25) 

( )| | 1 | 1ˆ ˆ ˆ− −= + −k k k k k k k kx x K z z  (26) 
T

| | 1 , | 1( )− −= −k k k k k zz k k kP P K P K  (27) 

3.3 MCC for statistical linear regression 
The core of the MCC method is to maximize the defined cost function. By applying MCC to HCKF 
and changing the way of measurement update, a robust HCKF algorithm based on MCC is obtained. 
First, the state prediction error is defined as  

ˆk k k|k -1= -δ x x  (28) 
Where, kx  denotes the truth value of state at moment k , and ˆk|k -1x  denotes the step prediction 

value at moment k . According to equation (6), the measurement equation of the integrated navigation 
system is linear. By reference [18], at this point, equations (22), (23) and (24) can be further written as  

| 1 | 1ˆˆ − −=k k k k kz H x  (29) 
T

, | 1 / 1zz k k k k k k k− −= +P H P H R  (30) 
T

, | 1 / 1xz k k k k k− −=P P H  (31) 
From the above three equations, linear regression equation can be constructed as 
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So the expression (32) can be rewritten as 
 k k k k= +y B x e  (37) 
The cost function defined as 
 ( ) ( )( )2 21 exp / 2 2J e e σ π σ= − −  (38) 
Equation (38) can be equivalent to the MCC form shown in equation (10) 
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Where, N n m= + , ,i ke  denotes the i -th element of the residual vector , , ,i k i k k i ke y x= −B  
The maximum value is obtained by taking the partial derivative of the cost function, specific 

expression is written as 

( ) ( )

( )

,
,1

, ,

,2 2
, ,

1 ,

= exp / 2 0

N

i k
i kk i

k i k i k

N
i k

i k i k
i i k

e eJ
e x

e
e e

x

σ

σ

=

=

∂ ∂∂
= ⋅

∂ ∂ ∂
∂

⋅ − ⋅ =
∂





Gx
x  (40) 

Where, ( ) ( ), ,k i i k i ke e eσϕ = ⋅G , the above expression can be rewritten as 

( ) ,

1 ,

0
N

i k
k i

i i k

e
e

x
ϕ

=

∂
⋅ =
∂  (41) 

The weight function is defined as ( ) /k k i ie eϕ=C , and substitute it into equation (41), we can get 
( )T 0k k k k k− =B C B x y  (42) 

The above formula can be solved by the fixed point iteration method proposed in literature [16]. 
Meanwhile, Badong Chen analyzed that the iterative solution is always convergent and obtains the 
iterative solution[17]  

( ) 1T T
k k k k k k k

−
=x B C B B C y  (43) 
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Where, ,

,

0
0
n k

k
m k

 
=  
  

C
C

C , ,n kC  and ,m kC  satisfy the following form 

( ) ( )( ), ,n k 1,k n kdiag e eσ σ=C G G  (44) 

( ) ( )( ), , ,m k n+1 k n+m kdiag e eσ σ=C G G  (45) 
The variance obtained after iteration is 

( ) ( )T T
| | -1= - - +k k k k k k k k k k kP I K H P I K H K R K  (46) 

Equation (43) can be further expressed as 
( )| 1ˆ ˆk k k k k k−= + −x x K z z  (47) 

Where 
( ) 1T T

| 1 | 1k k k k k k k k k

−

− −= +K P H H P H R  (48) 
1 T

| 1 , | 1 , | 1k k l k k n k l,k k
−

− − −=P S C S  (49) 
1 T

, , ,k u k m k u k
−=R S C S  (50) 

3.4 High-degree Kalman filtering algorithm based on MCC 
Combining the above MCC method with high-degree Cubature Kalman filter, the measurement update 
process in HCKF is transformed into the problem of solving linear regression equations, and a new 
robust filtering algorithm is obtained. The specific flow of the algorithm is summarized as follows. 

① Initialization 
Set the initial state and variance of the filter, [ ]0 0ˆ E=x x , ( )( )T

0 0 0 0 0ˆ ˆE  = − − P x x x x , select the 

kernel width σ  and iteration threshold 610ε −= .  
② Time update 
The time updating process of MCC-HCKF is consistent with that of traditional HCKF in section 

3.2. One-step state prediction | 1k k −x  and covariance | 1k k −P  of k  moment are obtained by using 
equations (11)-(19) and cubature points and their weights (14) and (18), and then the Cholesky 
decomposition is adopted to obtain the matrix kS . 

③ Measurement update 
1. The calculation of measurement prediction | 1ˆk k −z  at time k  according to equation (29), 

and the construction of the linear regression equation through equation (32).  
2. The linear regression equation is rewritten into the form of equation (37), with the number of 

iterations 1t = , and the initial iteration value was set as  

( ) ( ) 1T T
| 0ˆ k k k kk k

−
=x B B B y  (51) 

3. When the cost function reaches the maximum, the t-th iteration state at time k is obtained 
according to equations (44), (45) and (48)-(50) 

( ) ( )| 1|ˆ ˆ ˆk k k k kk k t −= + −x x K z z  (52) 
4. When equation (53) is established, ( )| |ˆ ˆk k k k t=x x ,otherwise, return to step 3. 

( ) ( )

( )

| | 1

| 1

ˆ ˆ

ˆ
k k t k k t

k k t

ε−

−

−
≤

x x

x
 (53) 

5. Finally, the state error covariance matrix |k kP  is obtained according to equation (46). 
It is worth noting that the time update process of robust HCKF based on MCC continues the 

advantages of high accuracy of HCKF. Linear regression process was adopted in the measurement 
update process, and the estimated value of the current state was obtained through iterative solution, 
which has the advantages of MCC method and improved the robustness of the algorithm. When the 
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kernel width σ → ∞ , MCC-HCKF became the traditional HCKF, which was proved as follows. 
When σ → ∞ , kernel function 

 ( )
2

2exp 1
2
eeσ δ

 
= − = 

 
G , at this point, the  

matrix kC , kR  and | 1k k −P satisfy 

| 1 | 1

k N N

k k

k k k k

×

− −

 =
 =
 =

C E
R R

P P
 (54) 

Substitute the above equation into equation (45) 
( )
( )

1T T
| 1 | 1

1T T
| 1 | 1      

      

k k k k k k k k k

k k k k k k k k

k

−

− −

−

− −

= +

= +

=

K P H H P H R

P H H P H R

K

 (55) 

Obviously, at this point, equation (49) is equal to equation (19). 
In literature [6-8], the cost function ( )J e  and weight function ( )eψ based on Huber robust filtering 

algorithm are given. According to equations (39), (44)-(45), the cost function and weight function 
based on MCC are known. The specific expressions are shown in Table 1 and Figure 2. 

As can be seen from Figure 2, the weight function ( )MSE eψ  of traditional filtering algorithm is a 
constant value, the weight function ( )Huber eψ  based on Huber is composed of a two-stage weight 
function, and the weight function ( )MCC eψ  based on MCC is composed of an exponential function. 
Since ( ) 1MSE eψ = , when abnormal measurement occurs, the traditional algorithm cannot reduce the 
abnormal interference, which will affect the filtering accuracy and robustness of the algorithm. When 
e α> , ( )Huber eψ  would decrease with the increase of e  in order to achieve the purpose of measuring 

abnormal interference, ( )MCC eψ , however, with the increase of e  rendering index in the form of 
attenuation, compared to the ( )Huber eψ  can be quickly reduced to near zero, has faster attenuation 
process, so can effectively inhibit the influence of measurement anomaly, so the algorithm has better 
robustness.  

Table 1． Cost function and weight function 

Estimation 
criterion 

cost function 
( )J e  

weight 
function 

( )eψ  
MSE 2e  1  

Huber 

2

2

            ,
2

 ,
2

e e

e e

α

αα α


<


 − >

 
1    ,

 ,

e

e
e

α
α α

 ≤

 >


 

MCC 
2

21 exp
2

2

e
σ

πσ

  −−  
    

2

2exp
2

e
σ

 −
 
 
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Figure 2. Diagram of weight function 

4.Simulation Results and Analysis 
The initial position of the aircraft is set to 108° east longitude, 34° north latitude and 200m high. The 
initial velocity of the carrier is 10m/s, and the direction is north. The maneuvering consists of 
accelerated, uniform, roll, right-circular, left-circular, climb, descend, and decelerate. The specific 
maneuver is shown in Table 2, the flight path is shown in Figure 3, and the red arrow indicates the 
starting position of the aircraft. 

Table 2. Flight path simulation 
time motor state 

0s ~ 20s  Uniform  5m / sv =  
20s ~ 25s  Right roll 0 ~1.02γ = ° °  
25s ~ 70s  right-circular 5m / sv =  
70s ~ 75s  Left roll 1.02 ~ 0γ = ° °  
75s ~ 95s  Uniform  5m / sv =  
95s ~ 105s  accelerate 21m / sa =  

105s ~ 115s  Uniform  15m / sv =  
115s ~ 125s  climb θ 0 ~ 20= ° °  
125s ~ 175s  Uniform  15m / sv =  
175s ~ 185s  descend θ 20 ~ 0= ° °  
185s ~ 215s  Uniform  15m / sv =  
215s ~ 225s  descend θ 0 ~ 20= ° − °  
225s ~ 275s  Uniform  15m / sv =  
275s ~ 285s  climb θ 20 ~ 0= − ° °  
285s ~ 385s  Uniform  15m / sv =  
385s ~ 390s  Left roll 0 ~ 3.06γ = ° °  
390s ~ 435s  left-circular 15m / sv =  
435s ~ 440s  Right roll 3.06 ~ 0γ = ° °  
440s ~ 490s  Uniform  15m / sv =  
490s ~ 500s  slow down 21m / sa = −  
500s ~ 600s  Uniform  5m / sv =  

3434.000234.000434.000634.0008

108
108.0001

108.0002
108.0003

108.0004

300

400

500

600

North / °East / °

H
ei

gh
t  /

 m

 

Figure 3. Diagram of flight path 
Initial position error of SINS is 10 m, initial velocity error is 0.5 m/s, eastward, northward initial 

misalignment Angle is 1 °, azimuth misalignment angle is 1 °. The root-mean-square of the horizontal 
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position error of GPS is 10m, the root-mean-square of the height error is 3m, and the root-mean-square 
of the speed error is 0.1m/s. The calculation cycle of SINS is 0.01s, the sampling period of GPS signal 
is 0.1s, and the flight time is 600s. Initial variance matrix  is (0)P  and system noise matrix is 

kQ  ,they are set as 
2 2 2 2 2

2 2 2 2 2 2

2 2 2 2

(0)=diag[(10 )  (10 )  (30 )  (1m/s)  (1m/s)  
    (1m/s)  (10m)  (10m)  (30m)  (0.1 )  (0.1 )  
           (0.1 )  (1000 )  (1000 )  (1000 ) ]   ug ug ug

° ° °
° °

°

P
 

2 2 2

2 2 2
9 1

[(0.01 / )  (0.01 / )  (0.01 / )  
                (100 )  (100 )  (100 )  0 ]

k diag h h h
g g gμ μ μ ×

= ° ° °Q
 

In order to verify the effectiveness of the proposed robust filtering algorithm, two cases are set to 
experiment with the proposed algorithm. The results and analysis are as follows. 

Define root-mean-square error (RMSE) of position at time k  as 

( )2

1

1 ˆRMSE ( )
M

i i
p k k

i
k x x

Mδ
=

= −  (56) 

Define minimum root-mean-square error (ARMSE) of position at time k  as 

( )2

1 1

1 ˆARMSE
T M

i i
p k k

k= i
x x

MTδ
=

= −  (57) 
i
kx  and ˆ i

kx  represent the real position error and estimated position error at the moment k  when 
the i th Monte Carlo is running. M=100 represents the number of Monte Carlo, Similar to RMSE and 
ARMSE of position, RMSE and ARMSE of speed can be written. 

Experiment 1    The measurement information is gaussian distribution. 
In the flight process, it is assumed that the measurement information of GPS is normal. At this time, 

the measurement noise satisfies the following gaussian distribution 
( )( )

( )( )
( )( )

,

2

2

2

~ 0, 0.1 /

~ 0, 10

~ 0, 3

E N

U

v

p

p

N m s

N m

N m

δ

δ

δ









v

v

v

 (58) 

The three algorithms of CKF, HCKF and MCC-HCKF ( )3σ =  proposed in this paper were 
respectively applied to the SINS/GPS integrated navigation system. RMSE pδ  and ARMSE pδ  of the 
position of the integrated navigation system were used as filter precision indexes. The curves of 
RMSE pδ  of longitude, latitude and altitude were shown in Figure 4, and ARMSE pδ  was shown in 
Table 3. 
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Figure 4. RMSE of position under gaussian noise conditions 
 

Table 3．ARMSE of position under gaussian noise condition 
Filtering 
algorithm 

Longitude 
ARMSE/m 

Latitude 
ARMSE/m 

altitude 
ARMSE/m 

CKF 0.3854 0.3680 0.1485 

HCKF 0.3815 0.3644 0.1470 

MCC-HCKF 0.3913 0.3820 0.1478 
According to the results of experiment in Figure 4 and Table 3, after 100s, the filter of the 

integrated navigation system converges. At this point, the position error of HCKF is less than that of 
CKF. Therefore, it can be seen that the HCKF with high-order volumetric rules performs better than 
CKF with third-order volumetric rules. The performance of MCC-HCKF is roughly the same as that of 
HCKF, but the positioning precision is slightly lower than that of HCKF, this is because in the 
gaussian noise environment, HCKF is a filter based on the minimum mean variance, and its 
performance is optimal when the noise is gaussian distribution. 

Experiment 2     The measurement information is the contaminated gaussian mixture 
distribution 

In the process of flight, assuming that the GPS measurement information is contaminated gaussian 
white noise, the measurement information is gaussian mixture distribution, and variance is 10 times of 
the original gaussian distribution. Formula (59) is the probability distribution expression of the white 
gaussian noise, Where, ε  is the mixture percentage, and its value range is 0 ~ 1. When 0ε = , the 
noise is an ideal gaussian distribution, this paper take 0.2ε = , at the same time increase the H-HCKF 
in literature [13] as contrast algorithm, and 1.345α = . 

( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

( ) ( )( ) ( )( )
,

2 2

2 2

2 2

~ 1 0, 0.1 / 0, 1 /

~ 1 0, 10 0, 100

~ 1 0, 3 0, 30

 − +

 − +

 − +


E N

U

v

p

p

N m s N m s

N m N m

N m N m

v

v

v

δ

δ

δ

ε ε

ε ε

ε ε

 (59) 
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Figure 5. RMSE of Position under non-gaussian noise conditions 
From the Figure 5, the measurement noise does not satisfy the gaussian distribution, a decrease in 

the filtering precision of traditional HCKF, show that algorithm can’t effectively restrain the influence 
of gaussian noise on the system, the MCC-HCKF filter showed good filtering performance and 
filtering precision higher than HCKF, this is because the MCC-HCKF filtering algorithm is updated at 
the same time as HCKF, a linear regression estimation based on MCC is carried out in the 
measurement update process through numerical iterative solution method. This process can reduce the 
influence of the deviation between the observation noise and the assumed distribution on the filter, but 
it also increases the amount of computation. With the decrease of σ , the robustness and accuracy of 
the filter are improved. As the σ  increases, the robustness decreases and the performance of the filter 
becomes closer to HCKF, which is consistent with the above theoretical proof. By comparing the 
estimated curves of H-HCKF and MCC-HCKF in the figure, it can be found that H-HCKF also has 
higher filtering accuracy, higher than MCC-HCKF ( )4σ =  and lower than MCC-HCKF ( )3σ = , 
indicating that MCC-HCKF ( )3σ =  is slightly better than H-HCKF at this time. 
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Figure 6. ARMSE of position under different σ  
To further analyze the effect of σ  on the positioning accuracy of integrated navigation, Figure 6 

shows the ARMSE of position under different σ . It can be seen from the figure that the ARMSE of 
longitude, latitude and altitude reached the minimum near 2.5σ = , and the value greater than or less 
than this value will increase the positioning error. It needs to be pointed out that when 0σ → , the 
filter will have numerical stability problems and the filtering precision will drop sharply, indicating 
that the selection of σ  has a great impact on the positioning precision of integrated navigation, and 
the system will be less affected by non-gaussian noise when 2.5σ = . 

5.Conclusion 
Traditional High-degree CKF algorithm assumes that process noise and measurement noise are 
gaussian white noise with known statistical characteristics. In practice this assumption is difficult to 
satisfy. In this paper, MCC and High-degree Cubature criterion are combined, the HCKF is improved, 
the advantages of both are fully utilized, a new robust high-degree Cubature Kalman filter is proposed, 
and Monte Carlo simulation is carried out with the loose combination navigation as the research 
background. The simulation results show that the algorithm can effectively deal with the problem of 
non-linearity and non-gaussian measurement noise of the integrated navigation system, and has 
achieved high filtering precision.  
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