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Abstract. The study of the problem of finding the stress-strain state of a sandwich plate with a 

transversally soft core under the action of a transverse load in a one-dimensional geometrically 

nonlinear formulation was carried out. A generalized formulation of the problem in the form of 

an operator equation is proposed. The properties of the operator of the equation are established, 

which make it possible to use the general results of the theory of monotone operators in the 

study of correctness. To find the stress-strain state of the plate, a two-layer iterative method is 

proposed with lowering the nonlinearity on the lower layer. A finite-dimensional 

approximation of the problem and the iterative method was carried out. The convergence of 

finite-dimensional approximations and the iterative method has been studied. For the numerical 

implementation of the proposed approximate methods, a software package has been developed 

in the Matlab environment. Based on it, numerical experiments were carried out. 

1.  Introduction 

Multilayer structures, in particular plates, are widely used in various areas of modern technology: 

aerospace, aviation, shipbuilding; industrial, civil and transport construction, chemical and power 

engineering [1–6]. Interest in laminated plates is primarily due to the fact that they have a set of 

properties and features that qualitatively distinguish them from traditional structures. Multilayer 

structures usually consist of different materials with significantly different physical and mechanical 

properties. For bearing layers, as a rule, materials with high elastic moduli are used, which perceive 

the main part of external force effects. The core serves for the monolithic structure and provides the 

redistribution of forces between the carrier layers, as well as performs a number of other functions, for 

example, protection from radiation, heat and sound protection, etc. [7–10] 

In this paper, we consider a sandwich plate consisting of two external carrier layers and a 

transversally soft core located between them and connected to the carrier layers by means of adhesive 

bonding. A generalized formulation of the problem in the form of an operator equation is proposed. 

The properties of the operator of the equation are established. This made it possible, in the study of 

correctness, to use the general results of the theory of monotone operators [11]. To find the stress-

strain state of the plate, a two-layer iterative method is proposed with lowering the nonlinearity on the 

lower layer. A finite-dimensional approximation of the problem and the iterative method was carried 

out. The convergence of finite-dimensional approximations and the iterative method has been studied. 

http://creativecommons.org/licenses/by/3.0
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For the numerical implementation of the proposed approximate methods, a software package has been 

developed in the Matlab environment. Based on it, numerical experiments were carried out. Note that 

a physically nonlinear problem of determining the equilibrium position of a soft network shells and 

methods of solving them have been studied in [12–15]. Geometrically nonlinear problems were 

considered in [16–20]. The nonlinear problems of the shells theory were studied in [21–26]. The case 

when both ends of the plate are rigidly fixed was studied in [12, 27]. 

2.  Problem statement 

We consider the problem of determining the stress-strain state of an infinitely wide sandwich plate 

with a transversally soft core. The plate length is equal a , the thickness of the aggregate is 2h, the 

thickness of the supporting layers are equal )(2 kh , where k is the layer number. The study of the 

processes of deformation of such elements, first of all, is dictated by the need to determine the degree 

of their suitability for further use. To describe the stress-strain state in bearing layers, the equations of 

the Kirchhoff-Love model are used; in the filler, the equations of elasticity theory, simplified within 

the accepted model of the transversally soft layer and integrated across the thickness with satisfaction 

of the conjugation conditions of the layers by displacement. In accordance with [8, 9], we introduce 

the following notation: )()( kk hhH   (Hereinafter we assume that k = 1, 2), 1
)(kX , 3

)(kX  are the 

components of the surface load, reduced to the middle surface of the k-th layer, )(kw , )(ku  are the 

deflections and axial displacements of points the middle surface of the k-th layer, respectively, 11
)(kT , 

11
)(kM  are membrane forces and internal bending moments in the k-th layer, respectively. The edges of 

the plate are assumed to be fixed, so that the conditions 0)()( xu k , 0/)( )()(  dxwdxw kk  for 

0x , ax   are satisfied. We consider the geometrically nonlinear case: 2)(2
)(

11
)( /dxudDM k

kk  , 

)( 2)()(
)(

11
)( )/(5.0/ dxwddxudBT kk

kk  , where )1/(2
)(

21

)(

12
)(

)()(
kkk

kk EhB   is the tension-

compression stiffness of the k-th layer, )(kE  and )(
12

k , )(
21

k  are the first-kind modulus of elasticity 

and the Poisson coefficients of the material of the k-th carrier layer, 3/2
)()()( kkk hBD   is the flexural 

rigidity of the k-th layer. Let ),,( )2()1()2()1( wuwwU   be the vector of displacements of the points of 

the middle surface of the k-th layer, be 1q  the tangential stresses in the core. For 1q  we assume that 

the boundary conditions 0)()0( 11  aqq  are satisfied. In [28, 29], to describe the stress-strain state 

of a three-layer plate, the potential energy strain functional was constructed: 

),(),(),(),( 1111 qUAqUAqUPqUL q ,   


2
2)(

0

2

1

)(
)(

1 ])([ )/(
2

1
/

2

1
),( { dxwddxudBqUP k

a

k

k
k  

dxwwcdxqdcqcdxwdD k
k }2)1()2(

3
21

2
21

1
2)(2

)( )()/()()/(   is the potential energy of 

deformation, 13G , 3E  are the modules of transverse shear and compression of the core, 131 /2 Ghc  , 

3
3

2 3/ Ehc  , )2(/33 hEc  , dxwXdxwdMuXqUA k
k

a

k

k
k

k
k ]/[),( )(3

)(

0

2

1

)(1
)(

)(1
)(

1




  is the work of 

given external forces and moments, 
1

)(kM  is the surface moment of external forces reduced to the 

middle surface of the k-th layer, 

  


a

k

k
kq dxqdxqdcqcdxwdHuuqUA

0

1212
2

1
1

2

1

)(
)(

)2()1(1 ][ //)(),(  is the work of unknown 

contact tangential stresses at the corresponding displacements . It was established [29] that the solution 

of the problem of equilibrium of a sandwich plate are stationary points of the functional L.  
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3.  Generalized statement of the problem 

Let ),0()(
2 aWV k

o

k   be the Sobolev spaces [30] with inner products 
a

kkkk
k dxdxddxudu

0

//),(  , 

k = 1, 2, 1122 VVVVV  . We denote the inner product in V by V),(  . The equations for the 

stationary points of the functional L were obtained by calculating the Gâteaux derivatives [31] of this 

functional. It was found that the stationary points ),( 1qU  are the solution of the variational equation 

1
1 ),()()),(),,(( VVWyZZfyZqUb  ,   (1) 

where the form ),( b  given on and the functional f  given on V  are determined by the formulas 

  
 

a kkk

k
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2  dxdxyddxqdс 1
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)(  .  (3) 

It is easy to verify that the form ),( b  is linear in the second argument. In addition, it is limited by 

the second argument. Therefore, by virtue of the Riesz-Fisher theorem, the form ),( b  generates an 

operator WWA :  defined by the formula 

WyZyZqUAyZqUb W  ),()),(),,(()),(),,(( 11 ,   (4) 

where W),(   is the inner product in W. Moreover, the following result is true. 

Theorem 1. The operator WWA :  defined by formulas (2), (4) is bounded. 

The functional f defined by formula (3) generates an element VF  by the formula 

)(),( ZfZF V  , VZ . Thus, problem (1) can be written as an operator equation 

)0,(),( 1 FqUA  ,    (5) 

4.  Investigation of the generalized statement of the problem. 

The study of correctness is based on the following results. 

The following Sobolev embedding theorem holds [30, p. 68]. 

Theorem 2. Let nR  be a bounded domain with a regular boundary  ,  p1 . Then 

)()( )()(  j
r

k
p WW  for kj 0  and all r  such that 1/1/)(/1  rnjkp ; besides, for any 

function )()(  k
pWu  the embedding inequality holds 

pk

kp

jrrj uCu ,, ||||||||  ,     (6) 

where pk ,||||   is the norm in )()( k
pW , and the constant 

kp
jrC  depends on  , j , k , p , r . 
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Recall that the operator YYA :  is called pseudo-monotone [11, 32] if it is bounded and for any 

weakly convergent sequence  
1kkv  in Y  to *v  from the inequality 0),(suplim

* 


Ykk
k

vvvA  it 

follows that YYkk
k

vvAvvA ),(),(inflim
**  



 for all Y . 

Theorem 3. The operator WWA :  defined by relations (2), (4) is pseudo-monotone. 

We say that the operator YYA :  satisfies a property of the of bounded Lipschitz continuity type 

(see [17, 33], compare with [34]) if  

,,)||(||)(|||| YZUZURAZAU YY      (7) 

where }||||,||max{|| YY ZUR  ,   is a non-decreasing on ),0[   function, ),0[   is a continuous, 

increasing function that satisfies the conditions 


)(lim 


, 0)0(  . 

Theorem 4. The operator WWA :  defined by relations (2), (4) satisfies the property of the type 

of bounded Lipschitz continuity (7) with functions )1()( 2*   c ,   )( , where the positive 

constant *c  depends on a , 13G , 3E , t , )(kE , 
)(

12
k , )(

21
k , )(kh , k = 1, 2, and constant in the 

embedding inequalities (6). 

We will say that an operator is quasi-potential [17, 33, 35] if  

YUUdtUtUUAdtUUtAUUUUtA YYY   ˆ,)),ˆ((])ˆ),ˆ(()ˆ)),ˆ(([(

1

0

1

0

. 

Theorem 5. The operator WWA :  defined by relations (2), (4) is quasipotential. 

Let’s introduce a functional 1: RW   by the formula 

WqUdtqUqUtAqU W   ),(),)),,(((),( 1

1

0

111 .  (8) 

We will say that the functional 1: RY   is coercive [11, 34], if 1: RY   for 1: RY  . 

Theorem 6. The functional defined by (8) is coercive. 

From Theorems 3–6, using the technique proposed in [17, 36–42], we can verify that the following 

theorem holds. 

Theorem 7. Problem (5) has at least one solution. 

5.  Iterative method and numerical experiments 

For an approximate solving of problem (5), by analogy with [43-48], its finite difference 

approximation is constructed in the form 

)0,(),)(( 1
21 hhhhh FqUAA  ,      (9) 

where, hA1  is a linear operator, hA2  is a nonlinear operator. 

To solve the difference scheme (9), we will use the following two-layer iterative process with 

lowering the nonlinearity on the lower layer [49-52] 

)0,(),)((
),(),( )(,1)(

21

)(,1)()1(,1)1(

1 h
nn

hh

nnnn

h FqUAA
qUqU

A 



,   (10) 

where ),( )0(,1)0( qU  is the given initial approximation, 0  is an iterative parameter. The 

convergence of finite-dimensional approximations and the iterative method has been studied. 

The numerical implementation of the iterative method (10) is being developed. A software package 

has been developed in Matlab. For the model problem, numerical experiments were performed. The 

iteration parameter was chosen empirically. The calculations were carried out for the following 

characteristics: 1a  cm, 005.021  hh  cm, 05.0h  cm, 1513 G  MPa, 253 E  MPa, 
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0319.03

)1(
X  MPa, 03

)2(
X , 4)( 107 kE  MPa, 3.0

)(
21

)(
12


kk

 , 01
)(


k
X , 01

)( kM , 2,1k . The 

number of mesh points is 100N . The initial approximation ),( )0(,1)0( qU  was set to zero. 

Calculations according to (10) were carried out as long as the residual norm remained greater than the 

specified accuracy 6105  . The optimal (in terms of the number of iterations) value of the iteration 

parameter was 1 , the number of iterations being equal to 17. 

The results of numerical experiments are shown in Fig. 1–3. It should be noted that the formulated 

for 1q  boundary conditions correspond to the absence of diaphragms at the edges 0x , ax  , which 

leads to the formation of maximum transverse tangential stresses in the aggregate cross sections at a 

distance of the order of its thickness h2 , which is observed in Fig. 2. The restriction of the free 

displacement of the end sections 0x , ax  , in the direction of the axis xO , leads to the formation 

in the bearing layers of significant membrane forces 11
)1(T , 

11
)2(T , from which the force 11

)1(T  in the cross-

section 2/ax   turns out to be compressing. Because of this, in the vicinity of this cross section, we 

should expect a loss of stability of the carrier layers in a mixed form (see [53]), the study of which 

requires the formulation of the corresponding problem. 
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Figure 1. Axial displacements in carrying layers Figure 2. Tangential stresses in core 
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Figure 3. Membrane forces in carrying layers 
 

It is easy to verify that the equality const11
)2(

11
)1( TT  holds, which you can be satisfied with on the 

basis of the results shown in fig. 3. 
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