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Abstract. We investigate behavior of the ruthenium targets under x-ray. In this paper, the
two-temperature equation of state for Ru is developed. Electronic spectrum of ruthenium is
calculated using density functional theory. We have defined an electron–ion coupling parameter
of ruthenium and its two-temperature thermal conductivity. With this input we run our two-
temperature hydrodynamic code.

1. Introduction

In the present paper, the oblique illumination of ruthenium (Ru) film by soft x-rays is considered.
Ruthenium is interesting because it is widely used in x-ray optics as a focusing mirror or a
protective pellicle of the laminates [1]. Protection helps to prevent contamination of laminates.
Ruthenium is chemically very stable metal, e.g. it is resistive against oxidization. Ruthenium
has high reflectivity for x-rays at grazing angles and is a promising material for free electron
laser beamlines.

Properties of the refractory metals like W, Mo, Ru are purely known in a warm dense matter
regime. In this regime the densities are comparable to the solid state densities while temperatures
are ∼ 1 eV. For considered here cases of ultrashort durations of the laser pulse τL ∼ 0.1 ps the
two-temperature (2T) effects are significant [2–6]. Electron temperature Te is higher than ion
temperature Ti in the 2T states created by ultrashort illumination.

The straight-through description from 2T to 1T (one-temperature) warm dense matter states
is necessary for quantitative calculations because pulse duration is shorter than duration teq
of the 2T to 1T transit while the electron–ion temperature equilibration time teq is shorter
than acoustic time scale ts = dT/cs defining the rate of hydrodynamics processes [2, 4–6]; here
dT is thickness of a heat affected zone (HAZ), cs is speed of sound; 1T relates to the one-
temperature situation when Te ≈ Ti. The HAZ is formed during the 2T stage. This straight-
through description of thermodynamics and kinetics of 2T and 1T states is presented in the
paper below.

http://creativecommons.org/licenses/by/3.0
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Let us say briefly about heating and coupling between thermal and mechanical effects. The
heat affected zone dT is created at the 2T stage lasting during the time interval teq because
at this interval the absorbed laser energy expands fast from an attenuation depth datt with
enhanced (relative to the 1T value χ1T) electron thermal diffusion coefficient χ2T, see [2, 7–9]
and [10].

Later in time the 1T stage begins, the coefficient χ significantly decreases, and the heated zone
expands more slowly, thus strongly delaying in its expansion relative to the interplay of acoustic
waves; it should be mentioned that at t > ts the heat expansion weakly depends on the current
acoustic situation; but in situations above an ablation threshold the redistribution of thermal
energy depends on nucleation and evolution of phase composition because heat conductance of
the layer with two-phase mixture is low, see papers describing thermal properties of foam [11–14].
Expansion of heat causes decrease of temperature. Temperature of the heated zone gradually
decreases as c(T − T0) ∼ Fabs/

√
πχ1Tt until thickness of the heated zone (which includes HAZ

formed at the 2T stage and addition formed during the 1T stage) equal to ∼ dT + 2
√
χ1Tt is

less than thickness df of a film; in the estimate T − T0 ∼ 1/
√
χ1Tt we neglect appearance of a

foamed layer; here T0 is initial temperature of a target, Fabs is absorbed energy, t is time elapsed
after an ultrashort pulse.

Decrease of temperature is slowed down when the heated zone achieves the contact with
dielectric or semiconductor substrate if substrate thermal conductivity is low; we illuminate a
film from its vacuum side; then the contact is the rear-side of a film relative to the illuminated
boundary. In the paper below we consider the case of a thick film. This means that thickness
of a film df is significantly larger than thickness of the heat affected zone dT; in the considered
case df is 50 nm, while dT is ∼ 15–30 nm in the case of ruthenium. Energetics of laser heating
analyzed below is rather high, thus absorbed energy is around an ablation threshold or higher.
In all metallic targets considered previously [15, 16] and in the case of a ruthenium film the
ablation threshold is few times higher than the melting threshold. Then thickness of a molten
layer dm is of the order of thickness of the heated zone for such energetics. Increase and decrease
of thickness of a molten layer dm(t) in time follows thermal history of a target. First, it increases
fast (supersonically) during 2T stage and is dm(t ∼ teq) ∼ dT at the end of the 2T stage. Second,
the molten zone dm(t) expands slowly (subsonically) at the 1T stage. In the cases considered
the energetics of heating is not enough to melt the ruthenium film through, along its entire
thickness df = 50 nm. Third, the molten layer begins to shrink thanks to cooling and finally
solidifies.

The freezing history and structure formation are one of final results of the paper. But to
come to description of them we have to begin and pass a long way with presenting physical
model of thermodynamic states and kinetic properties of hot ruthenium and with presenting of
a simulation approach.

Ultrashort (τL ∼ 0.1 ps), soft x-ray (hν = 92 eV) irradiation begins with absorption of x-ray
photons mainly by 4s2 and 4p6 shells of ruthenium 4d75s1 shown in figure 1. These shells are
approximately 43 eV (4p) and 73 eV (4s) below a Fermi level of cold Ru. Electrons ionized from
these shells have energies of the order of few tens of eV above the Fermi level of cold ruthenium.

We use method of projected augmented waves (PAW) and the exchange-correlation functional
in the Perdew–Burke–Ernzerhof (PBE) form [17] to describe electron behavior. In calculations of
thermodynamic properties and ionic configurations we use density functional theory (DFT) code
VASP [18,19]. We use the cutoff energy 400 eV, 32 empty levels per atom, and the magnitude of
the error at convergence of electronic iterations is no more than a 10−5 eV for the total energy
of the whole system. We use 528 k-points located in the first Brillouin zone of the hcp primitive
cell with two atoms.

Providing full potential-linear augmented plane waves (FP-LAPW) calculations with Elk
package [20] we employ the following conditions for convergence: we use 21×21×21 Monkhorst–
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Figure 1. Electron spectrum of cold Ru calculated by two different methods, see explanations
in text. Here g is density of electron states, E is electron energy.

Pack grid of wave vectors and 20 empty electron levels per atom. The multiplication of muffin-tin
radius on maximum electron wavenumber is equal to 8.5.

We can neglect energy loses connected with photo ionized electrons escaping from ruthenium
in vacuum. Indeed, to stop and return back a photo ionized electron at a spatial scale desc of
its flight in vacuum we need a positive surface charge σe and corresponding number of positive
holes at a surface of ruthenium σe/e equal to

σe/e = εesc/(e
2desc),

where e is charge of electron, εesc ∼ 30 eV is initial kinetic energy of an escaping primary electron
when it intersects surface of metal. Velocity of the 30 eV electrons is 3000 km/s. During the
pulse τL ∼ 0.1 ps these electrons will fly out from a surface at the distance 0.3 µm. It is plausible
to take desc ∼ 1 µm. Then, first, electron flight time out and back to surface is ∼ 1 ps and,
second, this flight distance is less than an illuminated radius RL ∼ 10 µm.

In this case a negative charge of electrons in vacuum holds equal charge of the positive holes
inside an irradiated spot—the double layer preventing spreading of a positive charge out from
the area of the irradiated spot exists. Configuration of electric field similar to that in capacitor
is formed. The capacitor plates are the electrons in vacuum and holes at the surface of a spot.
Taking given above values into account we obtain number of holes σe/e ∼ 1012 cm−2. While
if we put energy 100 mJ/cm2 into holes we obtain σe/e ∼ 1016 cm−2. Thus very small part of
this amount will prevent escaping of energy in the form of photo ionized electrons escaping into
vacuum.

ln experiments [1] considered here, ruthenium (Ru) is irradiated by soft x-rays (with 92 eV
photon energy, 13.5 nm wavelength) under glancing angle of incident plane wave equal to 20◦

(angle between the wavevector direction and target surface). In this conditions attenuation
depth is extremely small (figure 2); data for this plot are taken from the Henke’s tables [21].
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Figure 2. Attenuation depth datt(E) of soft x-rays (photon energy is 90 eV) in ruthenium at
normal conditions. Glancing angle is 20◦. Here E is photon energy.

The electron heat conductivity of Ru is rather small while electron-ion coupling parameter is
large. Therefore the heat affected zone in Ru is thin. In this paper we will focus our attention
on the thermodynamic and kinetic coefficients of ruthenium. It is especially important that they
are of interest to us in a two-temperature state, the appearance of which is characteristic for the
action of femtosecond laser pulses onto metals.

2. Thermodynamic functions of ruthenium

At the normal conditions ruthenium is a transition metal with hexagonal close-packed (hcp)
structure with an edge of the base and height of hexagonal cell equal to a = 2.706 Å and
c = 4.282 Å respectively. We have calculated the electronic spectra of solid ruthenium and
its internal energy and pressure in dependence on the density and electron temperature Te

at zero ion temperature Ti. Program VASP based on the density functional theory was used
for calculations. When calculated the electronic properties of hcp ruthenium, the variation of
hexagonal ratio c/a has been made (figure 3).

In figure 4 the electron density of states is shown at low electron temperature Te = 0.01 eV
and high temperature Te = 6 eV. In this density of states two domains are clearly visible,
corresponding to s-band (more longer) and d-band electrons. In our subsequent analysis of
the kinetic characteristics of ruthenium, we will use parabolic approximations of the electronic
spectra in these bands, so that the energy of electron as a function of its wave vector k in s-band
is

ε(k) = εs0 +
~
2k2

2ms
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and in d-band

ε(k) = εd1 +
~
2k2

2md

.

Here εs0 is a bottom of s-band, εd1 is a bottom of d-band (unlike the top of d-band εd2) and ms,
md are effective masses of s- and d-electrons. When measuring from the Fermi level at Te = 0,
we obtained εs0 = −8.0 eV, εd2 = 1.0 eV.

Pressure at zero electron temperature (cold pressure) calculated using the VASP program as
a function of volume is shown in figure 5 by circles. These data correspond to zero pressure equal
at the density 12.26 g/cm3. Calculated pressure is in a good agreement with that one calculated
for the compressed ruthenium in [22]. We extended our calculations to significant expansion. To
satisfy the experimentally more accurate value 12.47 g/cm3 of density corresponding to zero cold
pressure and maintain the minimum pressure value, cold pressure curve can be approximated
by the expression

p0(x) =
A

v0
x
(

xa − xb
)

(1)

with the volume per atom v0 and parameters

A = 3.81 a.u., a = 1.5886, b = 1.3333.

Here we have introduced the reduced density x = ρ/ρ0 with the equilibrium density at zero
temperature ρ0 = 12.47 g/cm3.

Respectively cold internal energy per atom is presented as

ε0(x) = A
(xa

a
− xb

b

)

.

Hartree units (a.u.) for A were used.
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In the framework of Mie–Grüneisen approach we have for the ion internal energy per atom
at the ion temperature Ti

ε(Ti, x) = A
(xa

a
− xb

b

)

+ 3kBTi

and for pressure

p(Ti, x) =
A

v0
x
(

xa − xb
)

+
3

v0
xG(x)kBTi.

Here, G(x) = d ln θ/d lnx is the Grüneisen parameter with θ(x) being the Debye temperature.
Debye temperature can be presented as

θ(x) =
~

kB
s(x)

(

6π2n

2

)1/3
(2)

with s(x) being the speed of sound. Further

s(x) ∝
√

dp0
dρ

,

then from (1)

s(x) ∝
√

(a+ 1)xa − (b+ 1)xb

and from (2)

θ(x) ∝ x1/3
√

(a+ 1)xa − (b+ 1)xb ∝ x1/3
√

y(x).
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Figure 5. Cold pressure as a function of density. Solid circles are results of VASP-calculations.
Solid curve is a pressure according to the formula (1). Also the results of calculations [22] are
shown (empty circles).

Here we designate y(x) = [(a+ 1)xa − (b+1)xb]/(a− b). To avoid the discontinuity of function
y(x) at decreasing values of x we change it onto the close function

y0(x) =
(a+ 1)x2a+1

b+ 1 + (a− b)xa+1
.

Functions y(x) and y0(x) and their derivatives coincide at x = 1 and the asymptotics of two
functions coincide for large x. Then

G(x) =
1

3
+

1

2

d ln θ

d lnx
=

1

3
+

1

2

(2a+ 1)(b+ 1) + a(a− b)xa+1

b+ 1 + (a− b)xa+1
.

Grüneisen parameter as a function of density is shown in figure 6.

3. Electron thermal conductivity

Because of small mobility of d-electrons we consider a contribution of only s-electrons into the
electron thermal conductivity. Relaxation of electrons at thermal conductivity process is due to
the electron–ion and electron–electron scattering. Then calculating partial thermal conductivity
κei because of electron–ion relaxation and thermal conductivity κee due to electron–electron
relaxation we can calculate resulting thermal conductivity as [23,24]

κ =
( 1

κei
+

1

κee

)

−1

. (3)

First we consider ei scattering. Thermal conductivity due to it can be presented as

κei =
1

3
Ce(Te, x)v(Te, x)λei(Ti, x) (4)
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with the electron heat capacity per unit volume Ce(Te, x), mean electron velocity v(Te, x) and
electron mean free path λei(Ti, x). Electron heat capacity of s-electrons per unit volume as a
function of Te and x can be represented by an expression of the type Ce = nekBf1(kBTe/εF(x)),
where ne is the electron concentration, εF(x) is the Fermi energy, kB is the Boltzmann constant
and f1 is a functiom of kBTe/εF(x) only. Fermi energy is a difference between the chemical
potential at Te = 0 and the bottom of s-band. Mean electron velocity v(Te, x) can be written
as v = vF(x)

√

1 + 3kBTe/[2εF(x)], where vF is a Fermi velocity. Calculated dependence of the

Fermi energy on the compression is consistent with that of εF ∝ x2/3, ms ≃ const, vF ∝ x1/3. So
the product Cev can be reproduced as an expression Cev(Te, x) = kBne0vF0x

4/3f(kBTe/[εF0x
2/3])

with εF0 and ne0 being the Fermi energy and electron concentration in x = 1 state and function
f depending on kBTe/(εF0x

2/3) only. This product was calculated as a function of Te at x = 1.
In the case of the top of d-band exceeding the Fermi level by 1.0 eV results can be approximated
by the expression Cev(Te, x) = kBne0vF0x

4/3C(τ), where

C(τ) =
τ(1 + c1τ

2)

1 + c2τ c3

with the dimensionless parameters

c1 = 0.3505, c2 = 0.2786, c3 = 1.8995.

Here we introduced dimensionless parameter τ = 6kBTe/(εF0x
2/3).

Electron mean free path λei can be written as

λei =
1

nσ
,

where n is the ion concentration, σ is the electron–ion scattering cross section. Wherein

σ ∝ u2t ∝ u20
Ti

θ
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with u20, u
2
t being the mean squared amplitude of zero-point and thermal lattice vibrations, θ is

the Debye frequency. Here we make no distinction between acoustical and optical vibrational
modes at ion temperatures Ti under consideration, exceeding the Debye temperature θ (hcp
lattice of ruthenium has three acoustical and three optical vibrational modes). Taking into
account that

u20 ∝
~
2

M kB θ

(M is the mass of atom), we obtain

σ ∝ ~
2

MkBθ

Ti

θ
∝ Ti

θ2
.

Then

λei ∝
θ2(x)

xTi
.

Substituting dependence of Cev and λ on Te, Ti, x into the electron thermal conductivity due
to the electron–ion scattering (4), we obtain the dependence of κei on these three parameters:

κei(Te, Ti, x) ∝ xy0(x)C(τ).

Then introducing the electron thermal conductivity due to the electron–ion scattering κr at
normal room conditions Ti = Tr = 298 K, x = xr = 12.41/12.47 (12.41 g/cc and 12.47 g/cc
being densities at normal conditions and respectively at zero temperature and pressure), we can
write κei(Te, Ti, x) as

κei(Te, Ti, x) = κr
x

xr

y0(x)

y0(xr)

Tr

Ti

C(τ)

C(τr)
. (5)

Now consider κee therm in (3). At not too high electron temperatures it can be written in
the form

κee =
1

3
nkB

kBTe

εF

v2F
νee

.

Taking into account that in this case νee ∝ (εF/~)(kBTe/εF)
2, we have

κee ∝
~kB
ms

n
εF

kBTe

.

We suppose that at arbitrary temperatures κee depends on kBTe/εF in a more general form:

κee ∝ xQ(τ). (6)

Function Q(τ) was calculated at x = 1 at various electron temperatures Te with the use of
electron–electron collision frequencies calculated as in [23]. Results can be well described by
expression

Q(τ) = 103
1 + γ1τ + γ2τ

2 + γ3τ
3

τ(γ4 + γ5τ)
(W/(mK)),

where γ1 = 2.8544, γ2 = 2.9883, γ3 = 2.5245, γ4 = 31.5261, γ5 = 8.9447. Then using (5) and (6)
we obtain κ(Te, Ti, x) from (3). In order to reproduce the value of thermal conductivity under
normal conditions 117 W/(mK), the value of kr was taken equal to 125.5 W/(mK).

Electron thermal conductivity in two-temperature situation in dependence on the electron
temperature for different ion temperatures is shown in figure 7.

When calculating the equilibrium one-temperature heat conductivity at ρ = 12.41 g/cm3, we
obtain results shown in figure 8 together with the experimental points (corresponding to the
constant pressure conditions). Difference between two curves can be partially explained by the
difference between the isochoric and isobaric conditions.



XXXIII International Conference on Equations of State for Matter

IOP Conf. Series: Journal of Physics: Conf. Series 1147 (2019) 012070

IOP Publishing

doi:10.1088/1742-6596/1147/1/012070

10

0 20000 40000 60000

Te_(K)

0

200

400

600

800

κ
_

(W
/m

/K
)

Ti = 298 K

Ti = 1000 K

Ti = 1700 K

Ti = 2300 K

Figure 7. The electron thermal conductivity as a function of the electron temperature. The
ion temperatures are 298, 1000, 1700, 2300 K.

4. Electron–ion energy exchange in ruthenium

Laser radiation in metals is first absorbed by electrons. Energy, transferred from electrons to
ions per unit time and unit volume, can be written as

Ė =

∫

~ωqṄq

V dq

(2π~)3
. (7)

Here Ṅq is the rate of change of concentration of longitudinal phonons Nq with momentum q

and energy ~ωq (in this paper we consider interaction of electrons with the acoustical phonons).

The rate of change of phonon concentration Ṅq can be represented in terms of spontaneous and
induced phonon emission and absorption of phonons:

Ṅq =

∫

{fp(1− fp−q)}+N(q)(fp(1− fp−q)− fp−q(1− fp))}

×Wqδ(εp−q + ~ωq − εp)
2dp

(2π~)3
. (8)

Here V is the volume of a solid, Wqδ(εp−q + ~ωq − εp) is the probability of electron transition
from momentum p to momentum p− q. Considering electron interaction with longitudinal
acoustic phonons, we can write Wq as

Wq =
πωq

ρV s2
U2(q)

with

U(q) =
4πzie

2

q2ξ(q)
n. (9)
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Figure 8. The electron thermal conductivity as a function of the equilibrium temperature.
Calculated values are taken at the constant density ρ = 12.41 g/cm3. Also experimental results
at constant pressure are given.

Here zi to be the ion charge, n to be the concentration of atoms. Matrix element of screened
Coulomb electron–ion interaction U(q) depends upon the electron dielectric permittivity ξ(q).
Supposing two-temperature situation, we have separately equilibrium electron

fp =
1

e

ε
p
− µ

kBTe + 1

(10)

and phonon

N(q) =
1

e

~ω
q

kBTi − 1

(11)

distribution functions with electron and phonon temperatures Te and Ti. Statistical factor
Φ = fp(1− fp−q) +N(q)(fp(1− fp−q)− fp−q(1− fp)) then can be written as

Φ = e
−

~ω

kBTi
e

~ω

kBTi − e

~ω

kBTe

e

~ω

kBTi − 1

e

ε− µ

kBTe

e

ε− µ

kBTe + 1

1

e

ε− µ− ~ω

kBTe + 1

. (12)

Here ω = ωq, ε = εp. Then integration over p in (8) is reduced to the evaluation of integral

I =

∫

e

ε− µ

kBTe

e

ε− µ

kBTe + 1

1

e

ε− µ− ~ω

kBTe + 1

δ(εp−q + ~ω − ε)
2dp

(2π~)3
. (13)
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To evauate (13) we introduce polar coordinates with z axis directed along the vector q and polar
angle θ. Denoting t = − cos θ and integrating over azimutal angle from 0 to 2π, we obtain

dp

(2π~)3
=

2πp2dp dt

(2π~)3
.

The argument of δ-function in (13) can be written as

β = εp−q + ~ω − ε =
(p− q)2

2m
+ ~ω − p2

2m
=

2pqt+ q2

2m
+ ~ω, (14)

when introducing the effective mass of electron m. It gives dt =
m

pq
dβ and integral I reduces to

I =
m

2π2~3q

∫

e

ε− µ

kBTe

e

ε− µ

kBTe + 1

1

e

ε− µ− ~ω

kBTe + 1

pdp

∫ β2

β1

δ(β)dβ. (15)

Taking into account that within the effective mass approach pdp = mdε we obtain

I =
m2

2π2~3q

∫

e

ε− µ

kBTe

e

ε− µ

kBTe + 1

1

e

ε− µ− ~ω

kBTe + 1

dε

∫ β2

β1

δ(β)dβ. (16)

Integration over ε now gives

I(ε, q) =
m2

2π2~3q

e

~ω

kBTe

e

~ω

kBTe − 1

kBTe ln
e

ε− µ− ~ω

kBTe + e
− ~ω

kBTe

e

ε− µ− ~ω

kBTe + 1

. (17)

We introduce longitudinal phonon dispersion law to be simply ω(q) = sq with a sound velocity
s. It corresponds to Debye approach.

Now we consider energy transfer from d-electrons to ions. d-band will be approximated by
the parabolic dispersion law ε(p) = ε1 + p2/(2md) with the upper boundary ε2. Here md is
the effective mass of d-electrons. We introduce momentum pd =

√

2md(ε2 − ε1). Now we must
take into account that for d-electrons p 6 pd and also

(p− q)2 6 p2d.

This inequality can be written as

p2 + 2pqt+ q2 6 p2d.

Then we obtain

t 6
p2d − p2 − q2

2pq
= t0.

Depending on the point t0 position with respect to the interval −1 6 t 6 1 two cases arise.
In the case I t0 > 1. It gives

p2d − p2 − q2

2pq
> 1

or

−q − pd 6 p ≤ −q + pd.
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As a result we obtain inequality

p 6 −q + pd. (18)

In the case I because of point t0 lies out of −1 6 t 6 1 interval, integration over t includes
the hole interval −1 6 t 6 1. Then limits of integration over β are

β1 = β(t = −1) =
−2pq + q2

2md

+ ~ω,

β2 = β(t = 1) =
2pq + q2

2md

+ ~ω.

We have β2 > 0 for all values of p. To obtain different from zero result of integration over β, we
must have β1 < 0.This inequality takes the form

2pq + q2

2md

+ sq > 0.

It gives for p:

p >
q

2
+mds (19)

in addition to earlier obtained (18). These inequalties define two-dimensional region of
integration in p–q-plane.

In the case II t0 point lies within −1 6 t 6 1 interval:

−1 6 t0 6 1.

Inequalities

−1 6
p2d − p2 − q2

2pq
6 1

then transform to

p > −q + pd,

p 6 q + pd, (20)

p > q − pd.

Now integration over t is restricted by the interval −1 6 t 6 t0. It gives limits for the integration
over β: β1 6 β 6 b2, where

b2 = β(t = t0) =
2pq

p2
d
−p2−q2

2pq + q2

2md

+ ~ω =
p2d − p2

2md

+ sq.

Integration of δ-function leads to the condition

β1 6 0,

b2 > 0.

It gives

−2pq + q2

2md

+ sq 6 0,

p2d − p2

2md

+ sq > 0

or

p >
q

2
+mds,

p 6

√

2mdsq + p2d.
(21)
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System of inequalities (20) and (21) together with the restriction p 6 pd define the region of
integration in p–q-plane. Within the Debye approach phonon momentum module is restricted
by the Debye momentum qD = ~(6π2n)1/3. Now we can write expression for Ṅq:

Ṅq = e
−

~ω

kBTe
e

~ω

kBTi − e

~ω

kBTe

e

~ω

kBTi − 1

×W 2
q

(

I
(

ε1 +
p2d
2md

, q
)

− I
(

ε1 +
1

2md

(q

2
+mds

)2
, q
)

)

=
m2

2π2~3

πω

ρV s2
kBTe

e

~ω

kBTi − e

~ω

kBTe

(

e

~ω

kBTi − 1

)(

e

~ω

kBTe − 1

)

U2(q)

q

× ln
e

ε− µ− ~ω

kBTe + e
− ~ω

kBTe

e

ε− µ− ~ω

kBTe + 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

ε = ε1 +
p2d
2md

ε = ε1 +

(

q/2 +mds
)2

2md

.

When considering ion temperatures exceeding the Debye temperature, we can expand the terms
exp(~ω/[kBTi]) and exp(~ω/[kBTe]) into series and obtain more simple expression

Ṅq =
m2

2π2~4

π

ρV s2
kBTekB(Te − Ti)

U2(q)

q

× ln
e

ε− µ− ~ω

kBTe + e
− ~ω

kBTe

e

ε− µ− ~ω

kBTe + 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

ε = ε1 +
p2d
2md

ε = ε1 +

(

q/2 +mds
)2

2md

.

Substituting this expression to (7), we obtain

Ė =
m2

d

4π3~7

kBTe

ρs
kB(Te − Ti)

×
∫ qD

0

dq q2U2(q) ln
e

ε− µ− ~ω

kBTe + e
− ~ω

kBTe

e

ε− µ− ~ω

kBTe + 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

ε = ε1 +
p2d
2md

ε = ε1 +

(

q/2 +mds
)2

2md

. (22)

It can be written as

Ė = g(Te)(Te − Ti),
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where the electron–ion coupling parameter g(Te) is

g =
m2

d

4π3~7

k2BTe

ρs

×
∫ qD

0

dq q2U2(q) ln
e

ε− µ− ~ω

kBTe + e
− ~ω

kBTe

e

ε− µ− ~ω

kBTe + 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

ε = ε1 +
p2d
2md

ε = ε1 +

(

q/2 +mds
)2

2md

. (23)

Now consider expression (9) for the matrix element of electron–ion interaction. It contains the
dielectric permittivity function ε(q). We calculate it within the Lindhard approach

ε(q) = 1 +
4π

q2









m2
d

π2~3q

∫ ε2−ε1

0

ln

∣

∣

∣

∣

2
√
2mdε+ q

2
√
2mdε− q

∣

∣

∣

∣

dε

e

ε1 + ε− µ

kBTe + 1

+
m2

s

π2~3q

∫

∞

0

ln

∣

∣

∣

∣

2
√
2msε+ q

2
√
2msε− q

∣

∣

∣

∣

dε

e

εs + ε− µ

kBTe + 1









.

Here first term in brakets results from screening by d-electrons and the second term is due
to the screening by s-electrons. First term exceeds the second one. Its value multiplied by
4π is close to the squared screening constant, obtained within the Thomas–Fermi approach, if
when calculating the screening effect we consider d-electrons as independent from s-electrons
and having own chemical potential. In this case for low temperatures for example

κd =

√

4πe2

dµd

dnd

=

√

6πe2nd

µd

≃
√

6πe2nd

ε2 − ε1

and this value does not change significantly with electron temperature increase. For q inside
the Debye sphere Lindhard and Thomas–Fermi dielectric permittivities are close to each other
if d-electrons are screened by d-electrons.

When considering the energy transfer from s-electrons to ions, we obtain the formula,
analogous to (22):

Ė =
m2

s

4π3~7

kBTe

ρs
kB(Te − Ti)

×
∫ qD

0

dq q2U2(q) ln
e

ε− µ− ~ω

kBTe + e
− ~ω

kBTe

e

ε− µ− ~ω

kBTe + 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

ε = εs +

(

q/2 +mss
)2

2ms

. (24)

It can be reduced to

Ė =
m2

s

4π3~7

kBTe

ρs
kB(Te − Ti)

×
∫ qD

0

dq q2U2(q) ln
e

εs + (q/2 +mss)
2/2ms − µ− ~ω

kBTe + 1

e

εs + (q/2 +mss)
2/2ms − µ− ~ω

kBTe + e
− ~ω

kBTe

. (25)
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Figure 9. The electron–ion coupling parameter as a function of the electron temperature Te at
the ion tempetature Ti = 298 K.

The electron–ion coupling parameter in this case is

g =
m2

s

4π3~7

k2BTe

ρs

×
∫ qD

0

dqq2U2(q) ln
e

εs + (q/2 +mss)
2/2ms − µ− ~ω

kBTe + 1

e

εs + (q/2 +mss)
2/2ms − µ− ~ω

kBTe + e
− ~ω

kBTe

. (26)

The electron–ion coupling parameter g as a function of the electron temperature Te is shown
in figure 9.

The dielectric function in matrix element of screened Coulomb electron–ion interaction was
taken in Lindhard approach [25,26].

5. Two-temperature hydrodynamics

We use equation of state and kinetic parameters presented above to run our 2T-HD code. At
the early stage (up to picosecond) thermal processes dominate. Profiles of electron temperature
Te(x, t = 0) are shown in figure 10. Time is elapsed from maximum of laser pulse. Durations τL
of x-ray pulse is equal to 100 fs; this is the e-folding time: ∝ exp(−t2/τ2L)

Electron heat conduction sharply enhanced in the 2T states (see figure 7) is important
from very early stage. Figure 11 presents the electron temperature profiles together with an
exponential law corresponding to photon absorption. In simulations absorption depths is equal
to an attenuation depth 3.5 nm for 92 eV soft x-rays (see figure 2). Electron heat conduction
gradually levels shallow and deep penetrations of electromagnetic energy. Late stage evolution
of a temperature field is shown in figure 12. Internal energy fluxes from absorption depth and
fills all thickness of a film. In this set of simulations we neglect heat conduction in support.
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Figure 10. Distribution of electron temperature for x-ray pulse at the maximum of the heating
pulse (half of total absorbed energy is delivered to the ruthenium film).
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Figure 11. Expansion of the energy absorbed in electrons from the heat absorption depth (solid
line; distribution of absorption powers is shown by dashed line) thanks to strong electron heat
conduction.

Dynamic oscillations of a film significantly influence average temperature, compare the instants
t = 10 and 50 ps in figure 12.
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Figure 12. Homogenization of temperature across thickness of a film with time is presented.
Few tens of ps are necessary for homogenization. We see that temperature decrease and increase
due to oscillations of thickness of a film are significant.
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Figure 13. Temperature relaxation after x-ray excitation.

The late (during the first acoustic oscillation of a film) stage for x-ray laser is given in figure
12. Spreading of absorbed heat along thickness of a film smeared out the initial which was
defined by absorption of laser energy (see figure 11).
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The electron–ion coupling coefficient is rather high in Ru. Therefore electron–ion relaxation
proceeds rather fast. Equilibration of electron and ion temperatures is shown in figure 13.
Equilibration takes approximately one picosecond. Temperature relaxation proceeds in narrow
layer in the case of oblique illumination by a x-ray laser because the attenuation depth datt is
extremely thin (3.5 nm).

Absorption of energy 100 mJ/cm2 heats a 50 nm ruthenium film above 3 kK, see figure 12.
We do not include melting in our approach developed above. Dividing a latent heat of melting
for ruthenium 38.59 kJ/mol to its heat capacity 24.06 J/(mol K) we obtain approximate value of
the ruthenium heat of fusion in degrees 1.6 kK. Melting temperature of ruthenium is 2.607 kK.
Thus ruthenium should be molten in our calculations if it is heated above approximately
4.2 kK. Threshold for total melting of a film (if it has spatially homogeneous temperature)
is approximately 60 mJ/cm2.

6. Conclusion

We have calculated thermodynamic functions and kinetic coefficients of the ruthenium, required
for use in the hydrodynamic code, describing the dynamics of transformation of ruthenium
sample under the action of femtosecond laser pulse. Of these thermodynamic functions are
pressure and internal energy and kinetic coefficients under consideration are electron thermal
conductivity and electron–ion coupling parameter responsible for the electron–ion energy
exchange. All characteristics are calculated in two-temperature situation when the electron
temperature exceeds the ion temperature. Using obtained information about equation of state
and kinetic properties we have studied thermal and hydrodynamics processes triggered by a soft
x-ray pulse in a ruthenium film.

Acknowledgments

Works done by KVA, MKP, PYV, INA on description of the two-temperature equation of state
and kinetic properties of ruthenium was supported by Russian Foundation for Basic Research
(grant No. 16-02-00864). Authors (KVA, ZVV, IDK, MKP, SVV, PYV, INA) thank the Russian
Science Foundation (grant No. 14-19-01599) for support of investigations concerning theoretical
background of absorption physics and for support of numerical simulations.

References
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